Rashid Bashir




Rashid Bashir completed his Ph.D. from Purdue University in Oct. 1992. From Oct. 1992 to Oct. 1998, he worked at National Semiconductor in the Analog/Mixed Signal Process Technology Development Group, where he was promoted to Sr. Engineering Manager. At National Semiconductor, he led the development and commercialization of 4 analog semiconductor process technologies. He joined Purdue University in Oct. 1998 as an Assistant Professor and was later promoted to Professor of Electrical and Computer Engineering and a Courtesy Professor of Biomedical Engineering and Mechanical Engineering. Since Oct. 2007, he joined the University of Illinois at Urbana-Champaign and was the Abel Bliss Professor of Engineering, and Professor of Electrical and Computer Engineering & Bioengineering. He was the Director of the Micro and Nanotechnology Laboratory (mntl.illinois.edu), a campus-wide clean room facility from Oct 2007 to Aug 2013 and the Co-Director of the campus-wide Center for Nanoscale Science and Technology (www.cnst.illinois.edu), a “collaboratory” aimed at facilitating center grants and large initiatives around campus in the area of nanotechnology. Since Aug 2013, he is now the head of the Bioengineering department.

He has authored or co-authored over 200 journal papers, over 180 conference papers and conference abstracts, over 110 invited talks, and has been granted 37 patents. He is a fellow of 6 international professional societies (IEEE, AIMBE, AAAS, APS, IAMBE, and BMES). His research interests include bionanotechnology, BioMEMS, lab on a chip, interfacing of biology and engineering from the molecular to the tissue scale, and applications of semiconductor fabrication to biomedical engineering, all applied to solving biomedical problems. Prof. Bashir’s key technical contributions and achievements lie in the area of BioMEMS and biomedical nanotechnology, especially in the use of electrical- or mechanical-based label-free methods for detection of biological entities on a chip. In addition, he has also made key contributions to 3-D fabrication methods that can be used for tissue engineering and development of cellular systems. He has been involved in 3 startups that have licensed his technologies (BioVitesse, Inc., Daktari Diagnostics, and most recently ElectroCyt).

In addition to leading his own research group, he is the PI on an NSF IGERT on Cellular and Molecular Mechanics and Bionanotechnology (2009-2016) and PI on an NIH Training Grant on Cancer Nanotechnology (2009 – 2016). He is also the campus lead and Co-PI on an NSF Science and Technology Center (STC) on Emergent Behavior of Integrated Cellular Systems (headquartered at MIT, with partners at Georgia Tech and UIUC) (2009 – 2015 and renewed for another 5 years 2015 – 2020). He is also Deputy Director of NSF Nanobio Node of the NcN (Network for Computational Nanotechnology). He also served on the external advisory board of the NIH-funded BioMEMS Resource Center at Harvard/MGH and the NIH-funded Center for Cancer Nanotechnology Excellence at Stanford University, and on various journal editorial boards.


Fellow of the International Academy of Medical and Biological Engineering (IAMBE), 2015


  • 2015
    • Kang, S. K.; Hwang, S. W.; Yu, S.; Seo, J. H.; Corbin, E. A.; Shin, J.; Wie, D. S.; Bashir, R.; Ma, Z. Q.; Rogers, J. A., Biodegradable Thin Metal Foils and Spin-on Glass Materials for Transient Electronics. Advanced Functional Materials 2015, 25, (12), 1789-1797, DOI:10.1002/adfm.201403469.

    • Hu, H.; Banerjee, S.; Estrada, D.; Bashir, R.; King, W. P., Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications. RSC Advances 2015, 5, (46), 37006-37012, DOI:10.1039/C5ra04257g.

    • Corbin, E. A.; Kong, F.; Lim, C. T.; King, W. P.; Bashir, R., Biophysical Properties of Human Breast Cancer Cells Measured Using Silicon Mems Resonators and Atomic Force Microscopy. Lab on a Chip 2015, 15, (3), 839-847, DOI:10.1039/C4lc01179a.

    • Banerjee, S.; Wilson, J.; Shim, J.; Shankla, M.; Corbin, E. A.; Aksimentiev, A.; Bashir, R., Slowing DNA Transport Using Graphene-DNA Interactions. Advanced Functional Materials 2015, 25, (6), 936-946, DOI: 10.1002/adfm.201403719.

  • 2014
    • Corbin, E. A.; Dorvel, B. R.; Millet, L. J.; King, W. P.; Bashir, R., Micro-Patterning of Mammalian Cells on Suspended Mems Resonant Sensors for Long-Term Growth Measurements. Lab on a Chip 2014, 14, (8), 1401-1404, DOI: 10.1039/c3lc51217g.

    • Popescu, G.; Park, K.; Mir, M.; Bashir, R., New Technologies for Measuring Single Cell Mass. Lab on a Chip 2014, 14, (4), 646-652, DOI: 10.1039/c3lc51033f.

  • 2013
    • Banerjee, S.; Shim, J.; Rivera, J.; Jin, X. Z.; Estrada, D.; Solovyeva, V.; You, X.; Pak, J.; Pop, E.; Aluru, N.; Bashir, R., Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore. ACS Nano 2013, 7, (1), 834-843.

    • Bhaduri, B.; Wickland, D.; Wang, R.; Chan, V.; Bashir, R.; Popescu, G., Cardiomyocyte Imaging Using Real-Time Spatial Light Interference Microscopy (Slim). Plos One 2013, 8, (2).

    • Corbin, E. A.; Millet, L. J.; Pikul, J. H.; Johnson, C. L.; Georgiadis, J. G.; King, W. P.; Bashir, R., Micromechanical Properties of Hydrogels Measured with MEMS Resonant Sensors. Biomedical Microdevices 2013, 15, (2), 311-319.

    • Shim, J.; Humphreys, G. I.; Venkatesan, B. M.; Munz, J. M.; Zou, X. Q.; Sathe, C.; Schulten, K.; Kosari, F.; Nardulli, A. M.; Vasmatzis, G.; Bashir, R., Detection and Quantification of Methylation in DNA Using Solid-State Nanopores. Scientific Reports 2013, 3.

  • 2012
    • Millet, L. J.; Corbin, E. A.; Free, R.; Park, K.; Kong, H.; King, W. P.; Bashir, R., Characterization of Mass and Swelling of Hydrogel Microstructures Using MEMS Resonant Mass Sensor Arrays. Small 2012, 8, (16), 2555-2562.

    • Park, K.; Kim, N.; Morisette, D. T.; Aluru, N. R.; Bashir, R., Resonant Mems Mass Sensors for Measurement of Microdroplet Evaporation. Journal of Microelectromechanical Systems 2012, 21, (3), 702-711.

    • Venkatesan, B. M.; Estrada, D.; Banerjee, S.; Jin, X. Z.; Dorgan, V. E.; Bae, M. H.; Aluru, N. R.; Pop, E.; Bashir, R., Stacked Graphene-Al2O3 Nanopore Sensors for Sensitive Detection of DNA and DNA-Protein Complexes. ACS Nano 2012, 6, (1), 441-450.

  • 2011
    • Venkatesan, B. M.; Polans, J.; Comer, J.; Sridhar, S.; Wendell, D.; Aksimentiev, A.; Bashir, R., Lipid Bilayer Coated Al2O3 Nanopore Sensors: Towards a Hybrid Biological Solid-State Nanopore. Biomedical Microdevices 2011, 13, (4), 671-682.

    • Radadia, A. D.; Stavis, C. J.; Carr, R.; Zeng, H. J.; King, W. P.; Carlisle, J. A.; Aksimentiev, A.; Hamers, R. J.; Bashir, R., Control of Nanoscale Environment to Improve Stability of Immobilized Proteins on Diamond Surfaces. Advanced Functional Materials 2011, 21, (6), 1040-1050. 

    • Stavis, C.; Clare, T. L.; Butler, J. E.; Radadia, A. D.; Carr, R.; Zeng, H. J.; King, W. P.; Carlisle, J. A.; Aksimentiev, A.; Bashir, R.; Hamers, R. J., Surface functionalization of thin-film diamond for highly stable and selective biological interfaces. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, (3), 983-988. 

    • Wang, Z.; Millet, L.; Chan, V.; Ding, H. F.; Gillette, M. U.; Bashir, R.; Popescu, G., Label-free intracellular transport measured by spatial light interference microscopy. Journal of Biomedical Optics 2011, 16, (2).

    • Mir, M.; Wang, Z.; Shen, Z.; Bednarz, M.; Bashir, R.; Golding, I.; Prasanth, S. G.; Popescu, G., Optical Measurement of Cycle-Dependent Cell Growth. Proceedings of the National Academy of Sciences of the United States of America 2011, 108, (32), 13124-13129.

  • 2010
    • Privorotskaya, N.; Liu, Y. S.; Lee, J. C.; Zeng, H. J.; Carlisle, J. A.; Radadia, A.; Millet, L.; Bashir, R.; King, W. P., Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. Lab on a Chip 2010, 10, (9), 1135-1141.

    • Park, K.; Millet, L. J.; Kim, N.; Li, H. A.; Jin, X. Z.; Popescu, G.; Aluru, N. R.; Hsia, K. J.; Bashir, R., Measurement of adherent cell mass and growth. Proceedings of the National Academy of Sciences of the United States of America 2010, 107, (48), 20691-20696.

    • Privorotskaya, N. L.; Zheng, H.; Carlisle, J. A.; Bashir, R.; King, W. P., Piezoresistive Microcantilevers from Ultrananocrystalline Diamond. Journal of Microelectromechanical Systems 2010, 19, 1234-1242. 


The Communications Office maintains the information included in Beckman Institute's online directory listings. In order to update your directory listing, please submit the following information to directoryupdates@beckman.illinois.edu:

  • a short bio including information on your educational background and your field
  • any honors and awards you may have received
  • a description of your research (approximately 200-400 words)
  • a list of recent representative publications
  • a photo of yourself (you can submit one or we can take one for you)