Mariana Kersh's directory photo.

Mariana Kersh

Associate Professor

Primary Affiliation

Computational Imaging


Status Part-time Faculty

Home Department of Mechanical Science and Engineering

Phone 300-0495


Address 4043 Beckman Institute, 405 North Mathews Avenue

  • Biography

    Dr. Mariana Kersh is an Assistant Professor in the Department of Mechanical Science and Engineering at The University of Illinois at Urbana-Champaign and is Director of the Tissue Biomechanics Laboratory. Previously, she was a post-doctoral research fellow in the Department of Mechanical Engineering at the University of Melbourne, under a university-wide McKenzie fellowship in which she was the sole recipient in the College of Engineering. Her research focuses on the use of experimental methods to evaluate macro-level mechanical and structural properties of bone, cartilage, and connective tissues, such as ligaments, in order to include them into finite element simulations of these tissues under physiological loads. She first received a Bachelor of Arts in English at The University of Texas-Austin, then went on to receive a Bachelors and Masters in Mechanical Engineering, and PhD in Materials Science Engineering at The University of Wisconsin-Madison as a National Science Foundation Pre-Doctoral Fellow.


  • Honors

    University of Illinois Undergraduate Symposium Finalist (faculty mentor) (2015); Plenary Poster, American Society of Bone and Mineral Research Annual Meeting (2014); Early Career Researcher Award, Australia-New Zealand Orthopedic Research Society (2013); Post-doctoral Research Competition, Australia-New Zealand Orthopedic Research Society (2nd prize
    co-author) (2012).

  • 2016

    • Fox, MC; Carlson, KJ; Ryan, T; Kersh, ME; Polk, JD; Reconstructing knee posture in humans, chimpanzees, and gorillas: subchondral and trabecular signals. Am J Physical Anthropology, 2016, 159, 146-146.
    • Polk, JD; Fox, MC; Kersh, ME; Which bone properties provide the best indicators of habitual posture? Am J Physical Anthropology, 2016, 159, 254-254.
    • Robinson, DL; Kersh, ME; Walsh, NC; Ackland, DC; de Steiger, RN; Mechanical properties of normal and osteoarthritic human articular cartilage. J of the Mechanical Behavior of Biomedical Materials, 2016, 61, 96-109.


    • Kersh, ME; Ploeg, HL; Pandy, MG; The dependence of knee joint stability on the cruciate and collateral ligaments. Movement & Sport Sciences, 2015, 37-54.
    • Martelli, S; Kersh, ME; Pandy, MG; Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement. J Biomechanics, 2015, 48(13), 3606-3615.
    • Zendeli, A; Kersh, ME; Bala, Y; Ghasem-Zadeh, A; Seeman, E; Zebaze, R; The dominant role of small pores on estimated matrix stress. Osteoporosis International, 2015, 26, S285-S286.


    • . Warden, SJ; Roosa, SMM; Kersh, ME; Hurd, AL; Fleisig, GS; Pandy, MG; .. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proceedings of the National Academy of Sciences, 2014, 111(14), 5337-5342.
    • Larsson, D; Luisier, B; Kersh, ME; Dall’Ara, E; Zysset, PK; Pandy, MG; … Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor. Annals of Biomedical Engineering, 2014, 42(5), 950-959.
    • Martelli, S; Kersh, ME; Schache, AG; Pandy, MG; Strain energy in the femoral neck during exercise. J Biomechanics, 2014, 47(8), 1784-1791.
    • Zendeli, A; Bala, Y; Kersh, M; Ghasem-Zadeh, A; Seeman, E; Zebaze, R; Accurate quantification of bone fragility requires inclusion of pores of all sizes. J Bone and Mineral Research, 2014, 29, S56- S57.
    • Zendeli, A; Bala, Y; Kersh, M; Ghasem-Zadeh, A; Seeman, E; Zebaze, R; Quantification of the heterogeneity of cortical porosity and the effect on strength. Osteoporosis International, 2014, 25, 575-576.


    • Kersh, ME; Pandy, MG; Bui, QM; Jones, AC; Arns, MA; .. The heterogeneity in femoral neck structure and strength. J Bone and Mineral Research, 2013, 28 (5), 1022-1028.
    • Kersh, ME; Zysset, PK; Pahr, DH; Wolfram, U; Larsson, D; Pandy, MG; Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J Biomechanics, 2013, 46(15), 2659-2666.
    • Martelli, S.; Pivonka, P.; Kersh, M.; Ebeling, P.; Pandy, M., Atypical femoral fractures are associated with high cyclic tensile strain regions during walking. J Bone and Mineral Research, 2013, 28.