Joseph W. Lyding's directory photo.

Joseph W. Lyding


Primary Affiliation

Artificial Intelligence for Materials


Status Part-time Faculty

Home Department of Electrical and Computer Engineering

Phone 333-8370



  • Biography

    Joseph Lyding is the Robert C. MacClinchie professor in the Department of Electrical and Computer Engineering. He joined the Illinois faculty to work with Nobel laureate John Bardeen on the 1D charge-density wave problem. During that time, he developed the first scanning tunneling microscope in the Midwestern United States, with which he developed the atomic resolution hydrogen resist process for patterning silicon surfaces. In these experiments, he also discovered the giant deuterium isotope effect that is now being used in large-scale chip production to reduce hot-carrier degradation in CMOS technology. Recently, he has developed a method to improve the performance of carbon nanotube transistors and he invented a technology for producing ultra-sharp hard-coated electrically conductive probes for scanned probe microscopy that has recently been commercialized. 


    • Ph.D., electrical & computer science, Northwestern University, 1983
  • Honors
    • 2015: Award for Outstanding Research from the Prairie Chapter of the American Vacuum Society 
    • 2014: Feynman Prize, Foresight Institute 
    • 2014: AAAS Fellow 
    • 2014: Fellow AAAS 
    • 2014: Award for Outstanding Research, Prairie Chapter of American Vacuum Society
    • 2013: AVS NSTD Nanotechnology Recognition Award
    • 2013: Research Excellence Award, Nano/Bio Interface Center, U. Pennsylvania 
  • Research

    Research Areas:

    • Advanced carbon-based materials and nanoscale devices

    • Nano-electronics and single electronics

    • Nano-materials

    • Nanotechnology

    • Quantum nanostructures for electronics and photonics

    • Semiconductor electronic devices

    • Semiconductor materials

    Research interests:

    • Carbon Nanotube Purification

    • Graphene Growth, Characterization and Device Fabrication

    • Ultra-Sharp Probe Fabrication

    • Integrating Graphene with Silicon and III-V Semiconductors

    • Chirally Pure Nanotube Growth

    • Dry Contact Transfer (DCT) Patterning on Nanostructures on Surfaces

    • Carbon Nanotube Purification

    • Oxide Silicon Interface Mapping

    • Cross-Sectional STM of Semiconductor Heterostructures

    • Atomically Precise Dopant Mapping

    • Deuterium Processing and Hot Electron Degradation in Semiconductor Devices

    • Growth of 3D silicon nanostructures

    • Carbon Nanotubes and Carbon Based Nanotechnology merged with Silicon and III-V Semiconductors

    • Silicon Based Molecular Electronics

    • STM-Based Nanolithography and Nanofabrication

    • Scanning Tunneling Microscopy and Spectroscopy

    Joe Lyding constructed Illinois' first scanning tunneling microscope which led to his invention of an ultrastable STM that is patented and commercially marketed. Lyding's group then established the STM laboratory at the Beckman Institute by constructing a series of interconnected ultrahigh vacuum (UHV) chambers housing STMs for experiments at elevated temperatures as well as down to liquid helium temperature. From 1992-1997 this system served as the basis for a University Research Initiative funded by the Office of Naval Research to develop STM-based nanolithographic methods. In 1993-94, Lyding developed the techniques and performed the first experiments demonstrating the ability to pattern hydrogen passivated silicon surfaces with atomic level precision. This technique has now been copied by many groups worldwide.

    In 1995, Lyding, working in collaboration with Phaedon Avouris of IBM, discovered a giant isotope effect when comparing the STM desorption of hydrogen and deuterium from silicon. This led to the idea by Lyding and his colleague Karl Hess that deuterium might be useful for retarding the hot-electron damage that occurs at the oxide-silicon interface of integrated circuit transistors. Defects at this interface are removed by a deliberate hydrogen treatment during chip fabrication. However, during chip operation they reappear over time as hydrogen is evolved from the interface under hot-electron assault. Lyding and Hess teamed up with Isik Kizilyalli of Lucent and demonstrated that replacing the hydrogen with deuterium increased chip lifetime by factors of 10 to 50. This dramatic improvement has been widely confirmed by many of the major chip makers who are now incorporating deuterium into their chip fabrication facilities.

    In addition to working with many companies on deuterium processing, Lyding has extended his nanofabrication research in the direction of molecular electronics. He has refined his STM method to the point where arrays of single silicon dangling bonds can be created as a template for tethering individual molecules. Working with Jeff Moore, Lyding has demonstrated the ability to tether and image arrays of individual molecules that may serve as the basis for future memory and switching elements. Lyding is also using STM spectroscopy to image intramolecular details and to provide a basis for evaluating molecular electronic functionality. Lyding now directs Illinois' part of an ONR-funded multidisciplinary university research initiative (MURI) to develop a nanoscale integrated circuit.

  • 2017

    • Duc A Nguyen, Huy A Nguyen, Joseph W Lyding, Martin Gruebele. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution, ACS Nano 2017, 11, 6328-6335, DOI:10.1021/acsnano.7b02649.
    • Joseph W Lyding. Chalcogenide-based 2D materials: Intrinsic nanoscale patterning, Nature Materials 2017, 16, 706-707, DOI:10.1038/nmat4922.
    • Mohammad Mehdi Pour, Andrey Lashkov, Adrian Radocea, Ximeng Liu, Tao Sun, Alexey Lipatov, Rafal Korlacki, Mikhail Shekhirev, Narayana Aluru, Joseph Lyding, Victor Sysoev, and Alexander Sinitskii. Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing, Nature Communications 2017, accepted.


    • A Radocea, T Sun, TH Vo, A Sinitskii, NR Aluru, JW Lyding. Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H: Si (100), Nano Letters 2016 17 (1), 170-178, DOI:10.1021/acs.nanolett.6b03709.
    • Cress, C. D.; Schmucker, S. W.; Friedman, A. L.; Dev, P.; Culbertson, J. C.; Lyding, J. W.; Robinson, J. T., Nitrogen-Doped Graphene and Twisted Bilayer Graphene via Hyperthermal Ion Implantation with Depth Control. ACS Nano 2016, 10, (3), 3714-3722, DOI:10.1021/ACSnano.6b00252.
    • D. Nguyen, Z.-G. Zhu, B. Pringle, J. Lyding, W.-H. Wang, and M. Gruebele. Composition-dependent metallic glass alloys correlate atomic mobility with collective glass surface dynamics, Physical Chemistry Chemical Physics 2016, 18, 16856-16861.
    • J. C. Koepke, J. D. Wood, Y. Chen, S. W. Schmucker, X. Liu, N. N. Chang, L. Nienhaus, J. W. Do, E. A. Carrion, J. Hewaparakrama, A. Rangarajan, I. Datye, R. Mehta, R. T. Haasch, M. Gruebele, G. S. Girolami, E. Pop, and J. W. Lyding. Role of Pressure in the Growth of Hexagonal Boron Nitride Thin Films from Ammonia-Borane, Chem. Mater. 2016, 28, 4169-4179.
    • Mikhail Shekhirev, Timothy H Vo, Mohammad Mehdi Pour, Alexey Lipatov, Siddhanth Munukutla, Joseph W Lyding, Alexander Sinitskii. Interfacial Self-Assembly of Atomically Precise Graphene Nanoribbons into Uniform Thin Films for Electronics Applications, ACS Applied Materials & Interfaces 2016, 9, 693-700, DOI:10.1021/acsami.6b12508.


    • Do, J. W.; Chang, N. N.; Estrada, D.; Lian, F. F.; Cha, H. Y.; Duan, X. Y. J.; Haasch, R. T.; Pop, E.; Girolami, G. S.; Lyding, J. W., Solution-Mediated Selective Nanosoldering of Carbon Nanotube Junctions for Improved Device Performance. ACS Nano 2015, 9, (5), 4806-4813, DOI: 10.1021/Nn505552d.
    • Khatib, O.; Wood, J. D.; McLeod, A. S.; Goldflam, M. D.; Wagner, M.; Damhorst, G. L.; Koepke, J. C.; Doidge, G. P.; Rangarajan, A.; Bashir, R.; Pop, E.; Lyding, J. W.; Thiemens, M. H.; Keilmann, F.; Basov, D. N., Graphene-Based Platform for Infrared near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment. ACS Nano 2015, 9, (8), 7968-7975, DOI:10.1021/ACSnano.5b01184.
    • Koepke, J. C.; Wood, J. D.; Horvath, C. M.; Lyding, J. W.; Barraza-Lopez, S., Preserving the 7x7 Surface Reconstruction of Clean Si(111) by Graphene Adsorption. Applied Physics Letters 2015, 107, (7), DOI:Artn 071603 10.1063/1.4928930.
    • Martin, P. P.; Lyding, J.; Rockett, A., Scanning Tunneling Spectroscopy of Epitaxial Silver Indium Diselenide. Surface Science 2015, 636, 8-12, DOI: 10.1016/j.susc.2015.01.012.
    • Nguyen, D.; Nienhaus, L.; Haasch, R. T.; Lyding, J.; Gruebele, M., Sub-Nanometer Glass Surface Dynamics Induced by Illumination. Journal of Chemical Physics 2015, 142, (23), DOI:Artn 234505 10.1063/1.4922695.
    • Nienhaus, L.; Goings, J. J.; Nguyen, D.; Wieghold, S.; Lyding, J. W.; Li, X. S.; Gruebele, M., Imaging Excited Orbitals of Quantum Dots: Experiment and Electronic Structure Theory. Journal of the American Chemical Society 2015, 137, (46), 14743-14750, DOI:10.1021/jACS.5b09272.
    • Nienhaus, L.; Wieghold, S.; Nguyen, D.; Lyding, J. W.; Scott, G. E.; Gruebele, M., Optoelectronic Switching of a Carbon Nanotube Chiral Junction Imaged with Nanometer Spatial Resolution. ACS Nano 2015, 9, (11), 10563-10570, DOI:10.1021/ACSnano.5b04872.
    • Wood, J. D.; Doidge, G. P.; Carrion, E. A.; Koepke, J. C.; Kaitz, J. A.; Datye, I.; Behnam, A.; Hewaparakrama, J.; Aruin, B.; Chen, Y. F.; Dong, H.; Haasch, R. T.; Lyding, J. W.; Pop, E., Annealing Free, Clean Graphene Transfer Using Alternative Polymer Scaffolds. Nanotechnology 2015, 26, (5), DOI:Artn 055302 DOI:10.1088/0957-4484/26/5/055302.


    • Carrion, E. A.; Wood, J. D.; Behman, A.; Tung, M.; Lyding, J. W.; Pop, E., Variability of Graphene Mobility and Contacts: Surface Effects, Doping and Strain. 2014 72nd Annual Device Research Conference (DRC) 2014 199-200.
    • Grosse, K. L.; Dorgan, V. E.; Estrada, D.; Wood, J. D.; Vlassiouk, I.; Eres, G.; Lyding, J. W.; King, W. P.; Pop, E., Direct Observation of Resistive Heating at Graphene Wrinkles and Grain Boundaries. Applied Physics Letters 2014, 105, (14), DOI:Artn 143109 DOI:10.1063/1.4896676.
    • Mohseni, P. K.; Behnam, A.; Wood, J. D.; Zhao, X.; Yu, K. J.; Wang, N. C.; Rockett, A.; Rogers, J. A.; Lyding, J. W.; Pop, E.; Li, X., Monolithic III‐V Nanowire Solar Cells on Graphene via Direct Van Der Waals Epitaxy. Advanced Materials 2014, 26, (22), 3755-3760.
    • Nguyen, D.; Mallek, J.; Cloud, A. N.; Abelson, J. R.; Girolami, G. S.; Lyding, J.; Gruebele, M., The Energy Landscape of Glassy Dynamics on the Amorphous Hafnium Diboride Surface. Journal of Chemical Physics 2014, 141, (20), DOI:Artn 204501 Doi 10.1063/1.4901132.
    • Nienhaus, L.; Scott, G. E.; Haasch, R. T.; Wieghold, S.; Lyding, J. W.; Gruebele, M., Transparent Metal Films for Detection of Single-Molecule Optical Absorption by Scanning Tunneling Microscopy. Journal of Physical Chemistry C 2014, 118, (24), 13196-13202.
    • Olewicz, T.; Antczak, G.; Jurczyszyn, L.; Lyding, J. W.; Ehrlich, G., Coexistence of Two Diffusion Mechanisms: W on W (100). Physical Review B 2014, 89, (23), 235408.


    • Do, J. W.; Estrada, D.; Xie, X.; Chang, N. N.; Mallek, J.; Girolami, G. S.; Rogers, J. A.; Pop, E.; Lyding, J. W., Nanosoldering Carbon Nanotube Junctions by Local Chemical Vapor Deposition for Improved Device Performance. Nano Letters 2013, 13, (12), 5844-5850, DOI: 10.1021/nl4026083.
    • Koepke, J. C.; Wood, J. D.; Estrada, D.; Ong, Z. Y.; He, K. T.; Pop, E.; Lyding, J. W., Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study. ACS Nano 2013, 7, (1), 75-86.
    • Mohseni, P. K.; Behnam, A.; Wood, J. D.; English, C. D.; Lyding, J. W.; Pop, E.; Li, X. L., InxGa1-aAs Nanowire Growth on Graphene: Van Der Waals Epitaxy Induced Phase Segregation. Nano Letters 2013, 13, (3), 1153-1161.
    • Walling, B. E.; Kuang, Z. Z.; Hao, Y. H.; Estrada, D.; Wood, J. D.; Lian, F. F.; Miller, L. A.; Shah, A. B.; Jeffries, J. L.; Haasch, R. T.; Lyding, J. W.; Pop, E.; Lau, G. W., Helical Carbon Nanotubes Enhance the Early Immune Response and Inhibit Macrophage-Mediated Phagocytosis of Pseudomonas Aeruginosa. Plos One 2013, 8, (11), DOI: 10.1371/journal.pone.0080283.
    • Ye, W.; Min, K.; Martin, P. P.; Rockett, A. A.; Aluru, N. R.; Lyding, J. W., Scanning Tunneling Spectroscopy and Density Functional Calculation of Silicon Dangling Bonds on the Si(100)-2 X 1:H Surface. Surface Science 2013, 609, 147-151.


    • Ashtekar, S.; Lyding, J.; Gruebele, M., Temperature-Dependent Two-State Dynamics of Individual Cooperatively Rearranging Regions on a Glass Surface. Physical Review Letters 2012, 109, (16).
    • Ashtekar, S.; Nguyen, D.; Zhao, K.; Lyding, J.; Wang, W. H.; Gruebele, M., Communication: An Obligatory Glass Surface. Journal of Chemical Physics 2012, 137, (14).
    • Do, J.-W.; Estrada, D.; Xie, X.; Chang, N. N.; Girolami, G. S.; Rogers, J. A.; Pop, E.; Lyding, J. W., Nanosoldering Carbon Nanotube Junctions with Metal Via Local Chemical Vapor Deposition for Improved Device Performance. Proceedings of 12th IEEE Conference on Nanotechnology 2012 1.
    • He, K. T.; Wood, J. D.; Doidge, G. P.; Pop, E.; Lyding, J. W., Scanning Tunneling Microscopy Study and Nanomanipulation of Graphene-Coated Water on Mica. Nano Letters 2012, 12, 2665.
    • Martin, P. P.; Rockett, A. A.; Lyding, J., Growth Mechanism and Surface Atomic Structure of AginSe2. Journal of Vacuum Science & Technology A 2012, 30, (4).
    • Schmucker, S. W.; Kumar, N.; Abelson, J. R.; Daly, S. R.; Girolami, G. S.; Bischof, M. R.; Jaeger, D. L.; Reidy, R. F.; Gorman, B. P.; Alexander, J.; Ballard, J.; Randall, J.; Lyding, J. W., Field-Directed Sputter Sharpening for Tailored Probe Materials and Atomic-Scale Lithography. Nature Communications 2012, 3, 935.
    • Timmermans, M. Y.; Estrada, D.; Nasibulin, A. G.; Wood, J. D.; Behnam, A.; Sun, D. M.; Ohno, Y.; Lyding, J. W.; Hassanien, A.; Pop, E.; Kauppinen, E. I., Effect of Carbon Nanotube Network Morphology on Thin Film Transistor Performance. Nano Research 2012, 5, (5), 307-319.


    • Ashtekar, S.; Scott, G.; Lyding, J.; Gruebele, M., Direct observation of two-state surface dynamics on amorphous silicon. Physical Review Letters 2011, 106.
    • Lyding, J. W., SURFACE CHEMISTRY Molecular cart-wheeling. Nature Chemistry 2011, 3, (5), 341-342. 
    • Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W., Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Letters 2011, 11, (11), 4547-4554.


    • Mayer, M. A.; Ruppalt, L. B.; Hebert, D.; Lyding, J.; Rockett, A. A., Scanning tunneling microscopic analysis of Cu(In,Ga)Se-2 epitaxial layers. Journal of Applied Physics 2010, 107, (3), doi:10.1063/1.3304919.
    • Mayer, M. A.; Ruppalt, L. B.; Hebert, D.; Lyding, J.; Rockett, A. A., Scanning tunneling microscopic analysis of Cu(In,Ga)Se-2 epitaxial layers. Journal of Applied Physics 2010, 107, (3), doi:10.1063/1.3304919.
    • Randall, J. N.; Ballard, J. B.; Lyding, J. W.; Schmucker, S.; Von Ehr, J. R.; Saini, R.; Xu, H.; Ding, Y., Atomic precision patterning on Si: An opportunity for a digitized process. Microelectronic Engineering 2010, 87, (5-8), 955-958.
    • Ashtekar, S.; Scott, G.; Lyding, J<.; Gruebele, M., Direct Visualization of Two-State Dynamics on Metallic Glass Surfaces Well Below T-g. Journal of Physical Chemistry Letters 2010, 1, (13), 1941-1945. 
    • He, K. T.; Koepke, J. C.; Barraza-Lopez, S.; Lyding, J. W., Separation-Dependent Electronic Transparency of Monolayer Graphene Membranes on III-V Semiconductor Substrates. Nano Letters 2010, 10, (9), 3446-3452. 
    • Scott, G.; Ashtekar, S.; Lyding, J.; Gruebele, M., Direct Imaging of Room Temperature Optical Absorption with Subnanometer Spatial Resolution. Nano Letters 2010, 10, (12), 4897-4900. 
    • Unarunotai, S.; Koepke, J. C.; Tsai, C. L.; Du, F.; Chialvo, C. E.; Murata, Y.; Haasch, R.; Petrov, I.; Mason, N.; Shim, M.; Lyding, J.; Rogers, J. A., Layer-by-Layer Transfer of Multiple, Large Area Sheets of Graphene Grown in Multilayer Stacks on a Single SiC Wafer. ACS Nano 2010, 4, (10), 5591-5598. 
    • Ye, W.; Martin, P. A. P.; Kumar, N.; Daly, S. R.; Rockett, A. A.; Abelson, J. R.; Girolami, G. S.; Lyding, J. W., Direct Writing of Sub-5 nm Hafnium Diboride Metallic Nanostructures. ACS Nano 2010, 4, (11), 6818-6824. 


    • Barraza-Lopez, S.; Albrecht, P. M.; Lyding, J. W., Carbon nanotubes on partially depassivated n-doped Si(100)-(2x1):H substrates. Physical Review B 2009, 80, (4).
    • Lyding, J. W., Carbon Nanotubes: A simple approach to superlattices. Nature Nanotechnology 2009, 4, (9), 545-546.
    • Randall, J. N.; Lyding, J. W.; Schmucker, S.; Von Ehr, J. R.; Ballard, J.; Saini, R.; Xu, H.; Ding, Y., Atomic precision lithography on Si. Journal of Vacuum Science & Technology B 2009, 27, (6), 2764-2768.
    • Ritter, K. A.; Lyding, J. W., The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials 2009, 8, (3), 235-242.


    • Ritter, K. A.; Lyding, J. W., Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunneling microscopy. Nanotechnology 2008, 19, (1).


    • Albrecht, P. M.; Barraza-Lopez, S.; Lyding, J. W., Preferential orientation of a chiral semiconducting carbon nanotube on the locally depassivated Si(100)-2x1 : H surface identified by scanning Tunneling microscopy. Small 2007, 3, (8), 1402-1406.
    • Albrecht, P. M.; Barraza-Lopez, S.; Lyding, J. W., Scanning tunnelling spectroscopy and ab initio calculations of single-walled carbon nanotubes interfaced with highly doped hydrogen-passivated Si(100) substrates. Nanotechnology 2007, 18, (9).
    • Albrecht, P. M.; Lyding, J. W., Lateral manipulation of single-walted carbon nanotubes on H-passivated Si(100) surfaces with an ultrahigh-vacuum scanning tunneling microscope. Small 2007, 3, (1), 146-152.
    • Albrecht, P. M.; Lyding, J. W., Local stabilization of single-walled carbon nanotubes on Si(100)-2x1 : H via nanoscale hydrogen desorption with an ultrahigh vacuum scanning tunnelling microscope. Nanotechnology 2007, 18, (12).
    • Carmichael, E. S.; Ballard, J. B.; Lyding, J. W.; Gruebele, M., Frequency-modulated, single-molecule absorption detected by scanning tunneling microscopy. Journal of Physical Chemistry C 2007, 111, (8), 3314-3321.
    • Ruppalt, L. B.; Lyding, J. W., Charge transfer between semiconducting carbon nanotubes and their doped GaAs(110) and InAs(110) substrates detected by scanning tunnelling spectroscopy. Nanotechnology 2007, 18, (21).
    • Ruppalt, L. B.; Lyding, J. W., Metal-induced gap states at a carbon-nanotube intramolecular heterojunction observed by scanning tunneling microscopy. Small 2007, 3, (2), 280-284.


    • Hersam, M. C., Abeln, G. C., and Lyding, J. W. (1999), "An Approach for Efficiently Locating and Electrically Contacting Nanostructures Fabricated via UHV-STM Lithography on Si(100)," Microelectronic Engineering, 47, p. 235.
    • Kizilyalli, I. C., Hess, K., and Lyding, J. W. (1999), "Channel Hot Electron Degradation-delay in MOS Transistors Due to Deuterium Anneal," Chapter 13, The VLSI Handbook (CRC Press LLC).
    • Lee, J., Epstein, Y., Berti, A. C., Huber, J., Hess, K., and Lyding, J. W. (1999), "The Effect of Deuterium Passivation at Different Steps of CMOS Processing on Lifetime Improvements of CMOS Transistors," IEEE Transactions on Electron Devices, 46, p. 1812.


    • Foley, E. T., Kam, A. F., Lyding, J. W., and Avouris, P. H. (1998), "Cryogenic UHV-STM Study of Hydrogen and Deuterium Desorption from Si(100)," Physical Review Letters, 80/6, pp. 1336-1339.
    • Lyding, J. W., Hess, K., Abeln, G. C., Thompson, D. S., Moore, J. S., Hersam, M. C., Foley, E. T., Lee, J., Chen, Z., Hwang, S. T., Choi, H., Avouris, P. H., and Kizilyalli, I. C. (1998), "UHV-STM Nanofabrication and Hydrogen/Deuterium Desorption from Silicon Surfaces: Implications for CMOS Technology," Applied Surface Science, 130-132, p. 221.