### Does Leveraging the Human Ventral Visual Stream Improve Neural Network Robustness?

Zhenan Shao<sup>1</sup>, Linjian Ma<sup>2</sup>, Bo Li<sup>2,3</sup>, Diane M. Beck<sup>1</sup>

BIAI 03/21/2024

<sup>1</sup>Department of Psychology, UIUC <sup>2</sup>Department of Computer Science, UIUC <sup>3</sup>Department of Computer Science, UChicago

...

Robust human vision and vulnerable machine vision



Human visual perception achieves various invariance

Biederman & Cooper, 1991; Cave, Bost & Cobb, 1996; Biederman & Gerhardstein, 1993;



Even imperceptible perturbations can lead to wrong prediction

Szegedy et al., 2014; Carlini & Wagner, 2017; Kurakin et al., 2017;

...



(Szegedy et al., 2014)

Achieving invariances along visual ventral stream

- The ventral visual stream forms a hierarchy, transitioning from basic visuals to more abstract and stable representations (Logothetis and Sheinberg, 1996, Zoccolan et al., 2007, Isik et al., 2014, Iordan et al., 2015...).
- Evolving representations space achieved by separating object manifolds (Dicarlo & Cox, 2007).



Achieving invariances along visual ventral stream

- The ventral visual stream forms a hierarchy, transitioning from basic visuals to more abstract and stable representations (Logothetis and Sheinberg, 1996, Zoccolan et al., 2007, Isik et al., 2014, Iordan et al., 2015...).
- Evolving representations space achieved by separating object manifolds (Dicarlo & Cox, 2007).





Achieving invariances along visual ventral stream

- The ventral visual stream forms a hierarchy, transitioning from basic visuals to more abstract and stable representations (Logothetis and Sheinberg, 1996, Zoccolan et al., 2007, Isik et al., 2014, Iordan et al., 2015...).
- Evolving representations space achieved by separating object manifolds (Dicarlo & Cox, 2007).















### Our question

1. Does training guided by human ventral cortex activity improve neural network robustness?



### Our question

1. Does training guided by human ventral cortex activity improve neural network robustness?

2. Does such improvement increase as we ascend the ventral visual cortex?



- DNN visual task training:
  - $L = L_{task}$



• DNN visual task training:









- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.



- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.



- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.
- 5 bilateral Regions of Interest (ROIs) were used





Neural activity pattern from each ROI of the ventral hierarchy





- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.
- 5 bilateral ROIs were used:





- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.
- 5 bilateral ROIs were used:





- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.
- 5 bilateral ROIs were used:







- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.
- 5 bilateral ROIs were used:







- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.
- 5 bilateral ROIs were used:







- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.
- 5 bilateral ROIs were used:





- Each human subject viewed ~30,000 images (~9,000 unique).
- Brain activities were recorded with 7T fMRI.
- 5 bilateral ROIs were used.







### Method

Summary of models

• 5 models with neural-guided training • 4 baseline models for comparison





# Robustness of Neurally-guided Models Evaluation

•  $l_p$ -based adversarial attack:



(Szegedy et al., 2014)

Task: Image Classification Dataset: ImageNet (Deng et al., 2009)



1.0 ---- None 0.8 Norm. Top-1 Accuracy 0.6  $0.4 \cdot$ 0.2 "Non 0.0 0.009 0.005 0.007 0.011 0.013 0.017 0.019 0.015 0.003 0.000.001 Attack Strength  $L_{\infty} \varepsilon$ 

Task: Image Classification Dataset: ImageNet (Deng et al., 2009)

Task: Image Classification Dataset: ImageNet (Deng et al., 2009)





#### Task: Image Classification

Dataset: ImageNet (Deng et al., 2009)

- Neural guidance improves robustness (max: 22% accuracy increase)
- There exists a hierarchy of improvement's magnitude



- Similar results have been observed with:
  - $L_{\infty}$  FGSM
  - Auto-Attack (APGD-CE, APGD-T, FAB square)
  - *L*<sub>2</sub> FGM
  - *L*<sub>2</sub> Deepfool



#### Task: Image Classification

Dataset: CIFAR-100 (Krizhevsky, 2009)

- Neural guidance improves robustness (max: 12% accuracy increase)
- There exists a hierarchy of improvement's magnitude





Task: Image Captioning Dataset: MSCOCO(Lin et al, 2014)



Task: Image Captioning Dataset: MSCOCO(Lin et al, 2014)

• Do representations from neurally-guided DNNs benefit other visual tasks beyond basic classification?



Task: Image Captioning Dataset: MSCOCO(Lin et al, 2014)

• Do representations from neurally-guided DNNs benefit other visual tasks beyond basic classification?



("Show, Attend, & Tell", Xu et al., 2015)

*Task: Image Captioning Dataset: MSCOCO (Lin et al., 2014)* 

None 1.00 Random • Neural regularization V1-shuffle improves robustness (max: 0.95 TO-shuffle 0.03 BLEU-1 increase) V1 0.90 V4 LO Norm. BLEU-1 0.82 0.80 🔶 TO • There exists a hierarchy of improvement's magnitude 0.75 0.70 Milling and 0.65 Neural-guidance 0.90.801 0.033 0.005 0.009 0.013 0.017 0.025 0.029 0.021 0.037  $\rightarrow$  Robust feature extractor Attack Strength  $L_{\infty} \varepsilon$ 

### Conclusion & Discussion

- We found hierarchical improvements in DNN robustness across:
  - Datasets (ImageNet, CIFAR-100, MSCOCO)
  - Tasks (Classification, Captioning)
  - Attacks ( $L_{\infty}$  PGD,  $L_{\infty}$  FGSM, Autoattack,  $L_2$  FGM,  $L_2$  Deepfool)
- Implications:
  - Evolving representation space along ventral visual stream
  - Learnable and improvable with generic DNN structures
  - Potential for uncovering principles of building human-like representation space and advancing DNN architectural development

#### • Further analysis

- Neurally-guided models are more shape-biased
- Smoother output surface achieved in a different way from conventional solutions.
- Neurally-guided models experience profound changes in their representation space







### Acknowledgement



Linjian Ma



Bo Li



Diane M. Beck





This work used NCSA Delta GPU through allocation SOC230011 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by National Science Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.