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Human visual perception 
achieves various invariance 
Biederman & Cooper, 1991; 
Cave, Bost & Cobb, 1996; 
Biederman & Gerhardstein, 1993;
…

Introduction
Robust human vision and vulnerable machine vision

Even imperceptible 
perturbations can lead to  
wrong prediction
Szegedy et al., 2014;
Carlini & Wagner, 2017; 
Kurakin et al., 2017; 
…

dog

(Szegedy et al., 2014)
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• The ventral visual stream forms a hierarchy, transitioning from basic visuals to more 
abstract and stable representations (Logothetis and Sheinberg, 1996, Zoccolan et al., 2007, 
Isik et al., 2014, Iordan et al., 2015…).

Introduction
Achieving invariances along visual ventral stream

(Sheth & Young, 2016)

Ventral Stream

• Evolving representations space achieved by separating object manifolds (Dicarlo & Cox, 
2007).
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• Evolving representations achieved more separable object manifolds (Dicarlo & Cox, 2007).

Sam

Introduction
Achieving invariances along visual ventral stream

Joe

Decision hyperplane



Introduction
Achieving invariances along visual ventral stream

Joe

Sam
+

• Evolving representations achieved more separable object manifolds (Dicarlo & Cox, 2007).

Decision hyperplane



Introduction
Achieving invariances along visual ventral stream

Joe

Sam + noise

• Evolving representations achieved more separable object manifolds (Dicarlo & Cox, 2007).

Decision hyperplane



Introduction
Achieving invariances along visual ventral stream

• Evolving representations achieved more separable object manifolds (Dicarlo & Cox, 2007).

Decision hyperplane



Introduction
Achieving invariances along visual ventral stream

Joe

Sam + noise

• Evolving representations achieved more separable object manifolds (Dicarlo & Cox, 2007).

Decision hyperplane



Introduction
Achieving invariances along visual ventral stream

UNKNOWN

• Evolving representations achieved more separable object manifolds (Dicarlo & Cox, 2007).

Decision hyperplane



Our question
1. Does training guided by human ventral cortex activity improve neural network 
robustness?



Our question

2. Does such improvement increase as we ascend the ventral visual cortex?

1. Does training guided by human ventral cortex activity improve neural network 
robustness?

Neurally-guided training
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“Neural Head”

Method
Neurally-guided training

• DNN visual task training with Neural Guidance:

“Task Head”

Max Pooling

Avg Pooling

Conv

FC

FC -- DNN neural representation

Human neural representation
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“Neural Head”
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Method
Neural data

(NSD, Allen et al., 2022)

• Each human subject viewed ~30,000 images (~9,000 unique).
• Brain activities were recorded with 7T fMRI. 
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Neural activity pattern

• Each human subject viewed ~30,000 images (~9,000 unique).
• Brain activities were recorded with 7T fMRI. 
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Method
Neural data

(NSD, Allen et al., 2022)
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Neural activity pattern
from each ROI of the ventral hierarchy

• Each human subject viewed ~30,000 images (~9,000 unique).
• Brain activities were recorded with 7T fMRI. 
• 5 bilateral Regions of Interest (ROIs) were used 

Subject 1 ROIs
5 R

OIs
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Method
Neural data

(NSD, Allen et al., 2022)
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Neural activity pattern in a given 
Region of Interest (ROI)
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• Each human subject viewed ~30,000 images (~9,000 unique).
• Brain activities were recorded with 7T fMRI. 
• 5 bilateral ROIs were used: 



Method
Neural data

(NSD, Allen et al., 2022)

• Each human subject viewed ~30,000 images (~9,000 unique).
• Brain activities were recorded with 7T fMRI. 
• 5 bilateral ROIs were used.
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Predicted Neural activity pattern
for a given ROI

TO
TO
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V4
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“Neural Predictor”



“Neural Head”
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Method
Neurally-guided training

• DNN visual task training with Neural Guidance:

“Task Head”

Max Pooling

Avg Pooling

Conv
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FC -- DNN neural representation

Predicted human neural representation
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Method
Summary of models
• 5 models with neural-guided training • 4 baseline models for comparison

None

Random

V1-shuffle

TOTO-shuffle

V1

TO

TO

V4

V2

V1

RLO



Robustness of Neurally-guided Models
Evaluation

• 𝒍𝒑-based adversarial attack:

(Szegedy et al., 2014)

dog Ostrich

max 0 !	23	
𝑙(𝑓4 𝑥 + 𝜏 , 𝑦)

We check:
1. Does neural guidance improve neural network robustness?
2. Is such improvement hierarchical?



Task: Image Classification
Dataset: ImageNet (Deng et al., 2009)

Results
𝑙5-based PGD adversarial attack
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Task: Image Classification
Dataset: ImageNet (Deng et al., 2009)

• There exists a hierarchy of 
improvement’s magnitude

• Neural guidance improves 
robustness (max: 22% 
accuracy increase)

• Similar results have been 
observed with: 
• 𝐿! FGSM
• Auto-Attack (APGD-CE, APGD-T, 

FAB square)
• 𝐿" FGM
• 𝐿"	Deepfool

Results
𝑙5-based PGD adversarial attack



• There exists a hierarchy of 
improvement’s magnitude

• Neural guidance improves 
robustness (max: 12% 
accuracy increase)

Task: Image Classification
Dataset: CIFAR-100 (Krizhevsky, 2009)

Results
𝑙5-based PGD adversarial attack



Task: Image Captioning
Dataset: MSCOCO(Lin et al, 2014)

Results
𝑙5-based PGD adversarial attack



“Happy dog sitting in the 
bed of a pickup truck.”

Task: Image Captioning
Dataset: MSCOCO(Lin et al, 2014)

Results
𝑙5-based PGD adversarial attack

(“Show, Attend, &Tell”, Xu et al., 2015)

• Do representations from neurally-guided DNNs benefit other visual tasks beyond basic 
classification?



“Happy dog sitting in the 
bed of a pickup truck.”

Task: Image Captioning
Dataset: MSCOCO(Lin et al, 2014)

Happy
Dog
Sitting
….

BLEU score

Fully-trained 
neurally-guided DNN backbone

Results
𝑙5-based PGD adversarial attack

(“Show, Attend, &Tell”, Xu et al., 2015)

• Do representations from neurally-guided DNNs benefit other visual tasks beyond basic 
classification?



Task: Image Captioning
Dataset: MSCOCO (Lin et al., 2014)

• There exists a hierarchy of 
improvement’s magnitude

• Neural regularization 
improves robustness (max: 
0.03 BLEU-1 increase)

Results
𝑙5-based PGD adversarial attack

Neural-guidance 
à Robust feature extractor



Conclusion & Discussion

• Further analysis

• We found hierarchical improvements in DNN robustness across:
• Datasets (ImageNet, CIFAR-100, MSCOCO)
• Tasks (Classification, Captioning) 
• Attacks (𝐿! PGD, 𝐿! FGSM, Autoattack, 𝐿" FGM, 𝐿" Deepfool)

• Implications:
• Evolving representation space along ventral visual stream
• Learnable and improvable with generic DNN structures
• Potential for uncovering principles of building human-like 

representation space and advancing DNN architectural development

• Neurally-guided models are more shape-biased
• Smoother output surface achieved in a different way from 

conventional solutions.
• Neurally-guided models experience profound changes in their 

representation space
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