Celebrating Aging Research at Illinois:
Cognition, Lifespan Engagement, Aging, and Resilience (CLEAR)

February 19, 2016
Fig. 2.1. Healthy Ageing

Personal characteristics

Genetic inheritance

Health characteristics
- Underlying age-related trends
- Health-related behaviours, traits and skills
- Physiological changes and risk factors
- Diseases and injuries
- Changes to homeostasis
- Broader geriatric syndromes

Environments

Functional ability

Intrinsic capacity

Fig. 2.4. A public-health framework for Healthy Ageing: opportunities for public-health action across the life course.

- **High and stable capacity**
 - **Health services:** Prevent chronic conditions or ensure early detection and control.
 - **Long-term care:** Support capacity-enhancing behaviours.
 - **Environments:** Promote capacity-enhancing behaviours.

- **Declining capacity**
 - **Health services:** Reverse or slow declines in capacity.
 - **Long-term care:** Ensure a dignified late life.
 - **Environments:** Remove barriers to participation, compensate for loss of capacity.

- **Significant loss of capacity**
 - **Health services:** Manage advanced chronic conditions.
 - **Long-term care:**
 - **Environments:**
COGNITION, LIFESPAN ENGAGEMENT, AGING, AND RESILIENCE (CLEAR)

CLEAR promotes scientific research on the nature of aging and successful cognitive development during adulthood, with a focal interest in how engagement—a sustained investment in physical, mentally stimulating, and/or social activities—contributes to cognitive health and well-being with aging.

Chair: Liz Stine-Morrow

The Cognition, Lifespan Engagement, Aging, and Resilience (CLEAR) initiative promotes scientific research on the nature of aging and successful cognitive development during adulthood, with a focal interest in how engagement—a sustained investment in physical, mentally stimulating, and/or social activities—contributes to cognitive health and well-being with aging.

We take an interdisciplinary approach to stimulate and support:

- basic research on the mechanisms and processes underlying adult cognitive development,
- use-inspired basic research on how activity engagement contributes to resilience through the adult lifespan, as well as how adults choose and maintain (i.e., self-regulate) activity patterns over time,
- the development and empirical evaluation of theoretically based, cost-effective, and life-integrated interventions that translate findings from basic research in psychology, cognitive and affective neuroscience, kinesiology, education, and the health sciences into programs and practices that enhance cognitive effectiveness, productivity, and well-being through the adult life span, and
- back- translational research to clarify the mechanisms underlying intervention effects, including those related to behavioral, neural, emotional, motivational, and social processes.

http://beckman.illinois.edu/research/initiatives/clear
clear@lists.illinois.edu
Jeff Woods
Director,
Center for Health Aging & Disability
Healthy Aging at Illinois

Healthyaging.illinois.edu

A collaboration between the
- Center for Health, Aging and Disability (College of AHS)
- Health Care Systems Engineering Center (College of Engineering)
for the benefit of all who do aging research on campus

Our goal is to bring campus faculty and students who do aging research together for the common good:

- new research interactions
- community connections
- connections with health care providers
- development of grant proposals
- seminar series

We have been provided campus-level support from the Provost’s Office
Center on Health, Aging and Disability (CHAD)

URL: http://chad.illinois.edu (217) 333-4965

• Endowed Center within the College of Applied Health Sciences with 100+ members from around campus. All AHS faculty are automatically CHAD members.

• Mission
 – Foster interdisciplinary research, education and outreach that promotes health and wellness, healthy aging across the lifespan, healthy communities and optimal participation of individuals with disabilities. **WE ARE THE RESEARCH SUPPORT ARM OF THE COLLEGE OF AHS FOR ALL AHS FACULTY.**

• Who we are:
 – Jeff Woods, Director, 244-8815 (woods1@Illinois.edu)
 – Sa Shen, Biostatistician, 300-9211 (sashen2@Illinois.edu)
 – Wendy Bartlo, Proposal Development & Community Outreach
 – Penny Nigh, Office Administrator, 333-4954 (nigh@Illinois.edu)
 – Undergrad interns
 – Work in conjunction with the Business Office for competitive grant proposal submission

• Main office located in room 1008 Khan Annex, Huff Hall

New Web page coming early 2016!
Health Care Engineering Systems Center (HCESC)

URL: http://healtheng.illinois.edu

• Endowment through Jump ARCHES and OSF Hospital

• Mission
 – The Health Care Engineering Systems Center (HCESC) provides clinical immersion to engineers and fosters collaborations between engineers and physicians. The aim is to develop new technologies and cyber-physical systems, enhance medical training and practice, and in collaboration with key partners, drive the training of medical practitioners of the future.

• Who we are:
 – Kesh Kesavadas, Director, 244-9341 (kesh@Illinois.edu)
 – Tony Michalos, Assoc. Director, 300-9211 (michalos@Illinois.edu)
 – Michelle Osborne, Office Administrator, (mosb@Illinois.edu)
 – Two Research Scientists
 – Work in conjunction with the Business Office at CSL for competitive grant proposal submission

• Main office located in room 1206 W. Clark Ave, Urbana, IL
The timing is right for interactions between CoEng and AHS!

- UIUC Applied Health Sciences
- New UIUC Engineering-Inspired College of Medicine
- UIUC Engineering
- Mayo Clinic OSF Healthcare

TECHNOLOGY

MEDICINE
A similar position is being offered in Engineering
Pieces of the Puzzle: Health Technology and Aging at UIUC

- Carle-Illinois College of Medicine
- Beckman Institute for Advance Science and Technology
- College of Engineering
- Center on Health, Aging and Disability
- College of Applied Health Sciences
- Health Technology and Aging
- Health Care Engineering Systems Center
- Cluster Hires Health Technology and Aging
- Chittenden Family Foundation
- OSF HealthCare JUMP/ARCHES
- Mayo-UIUC Alliance (Kogod Center) (Geriatrics)
- Singapore Aging Nation
- WHO Age-Friendly Cities
- UIUC Art & Design
- Woese Institute for Genomic Biology
- UIUC Extension
- Presence Health
- AARP
- Clarke-Lindsey Village
- Public & Community Health
- Health Care Engineering Systems Center
- Speech Hearing Science
- Kinesiology
- Disability Resources
- Recreational Sport Tourism
- Center Wounded Veterans
- Electrical & Computer Science
- Mechanical
- Civil
- Bioengineering
- Beckman Institute for Advance Science and Technology
- Center Wounded Veterans
- Health Care Engineering Systems Center
- WHO Age-Friendly Cities
- UIUC Art & Design
- Presence Health
- UIUC Extension
3 excellent candidates:
Wendy Rogers
Maureen Schmitter-Edgecombe
Michelle Carlson
Promoting Aging-in-Place Using Smart Environment Technologies for Health Assessment and Intervention

Thursday, February 25, 2016
9 a.m. – 10 a.m.
NCSA Auditorium (NCSA 1122)
1205 W. Clark St., Urbana

Health Technology and Aging: A Vision for Improving Quality of Life and Standard of Care

Friday, February 26, 2016
9 a.m. – 10 a.m.
AHS Auditorium (112 Huff Hall)
1206 S. Fourth St., Champaign
Community Outreach for an Age-Friendly Champaign-Urbana

What are our goals?

- to make Champaign-Urbana a more 'age-friendly', livable community
- to achieve status as an 'age-friendly' city in the eyes of the World Health Organization (WHO) and AARP

-obviously important to older adults (and all) who live in our community, but why is the University of Illinois and specifically the Center on Health, Aging and Disability interested in this and why should you be?........
World Health Organization (WHO) – Age-Friendly Cities Program: Steps

Age Friendly Process

Step 1: ENTERING THE NETWORK

Step 2: PLANNING PHASE (Years 1 - 2)

Step 3: IMPLEMENTATION & EVALUATION (Years 3 - 5)

Step 4: CONTINUOUS CYCLE OF IMPROVEMENTS (Years 5+)

Plan

Evaluate

Implement
These topics are flexible and can be combined, separated, or added to, dependent on the community.
Why is UIUC's, Center on Health, Aging and Disability Wanting to Lead Such an Effort?

-Land grant mission 'service is in our DNA'
-Demonstrate to state government our local impact
-Attract high quality faculty, keep them in the community after retirement
-Learn from our older generation (ExperienceCorps volunteers)

I want to leverage this for the benefit of our faculty and students:
- Potential to address research questions (technology, health and the new College of Medicine - a living laboratory?)
- Opportunities for our students (undergrad and grad)
- Potential to interact with stakeholders (e.g. Clarke-Lindsey, Presence, local governments, park districts, YMCA, OLLI, health support groups, Health Alliance, area agencies on aging, Faith-in-Action)
- Potential to attract non-traditional funding support for research and services

CHAD has the capacity to coordinate and communicate to all stakeholders. We have experience accessing resources (e.g. grants). We have topical expertise in the domains. Every effort needs a 'leader'!
3 excellent candidates:
Wendy Rogers
Maureen Schmitter-Edgecombe
Michelle Carlson
SAVE-THE-DATE

The Chittenden Symposium

Sponsored by
The Departments of Kinesiology and Community Health and Industrial and Enterprise Systems Engineering

April 26, 2016
8:30 AM - 5:30 PM
iHotel and Conference Center

Registration: 8:30 AM

§
Research Program: 9:00 AM - 12 NOON
“Health, Technology & Aging”

§
Community Outreach Program: 1:15 PM - 4:30 PM
“Age-Friendly Champaign-Urbana”

Reception/Poster Presentation Following
Pieces of the Puzzle: Health Technology and Aging at UIUC

3 excellent candidates:
Wendy Rogers
Maureen Schmitter-Edgecombe
Michelle Carlson
JUMP ARCHES

- 25 million dollar gift from Jump Trading
- 25 millions dollar endowment from OSF
- 12 million inkind support from COE at UIUC
- Collaboration between OSF Healthcare, UI CoM Peoria and UIUC Engineering
- JUMP Simulation Centers at Peoria and Urbana
- Applied Research for Community Health through Engineering and Simulation
- Grant proposals of ~50K annually
- Following NIH R21 format
- Research team including OSF clinicians and UIUC engineers
- Goal to fund research in sensing devices, materials and mechanics, health information technologies, simulation, human factors/ergonomics and design

http://www.jumpsimulation.org/research/applied/arches/index.html
Singapore Interactions

- A modern city-state, ¼ the size of Champaign County (5 million residents)
- A vertical living arrangement, greenspaces
- One-party rule, top-down rule = rapid advancements, can do research faster
- Great respect for elderly
- No ‘nursing homes’; children try to care for parents = a challenge
- Opportunity for ‘aging in place’ research
- High tech society
- Brand and ranking conscious society; only will deal with ‘players’; like to do business with friends
- Engineering has a relationship with Singapore that could be leveraged
- Singapore National Research Foundation deciding on whether to provide a research thrust in ‘healthy and active aging’
- Need to partner with national institution (NUH, SUTD, NUS)
- CHAD has sent the UIUC Singapore office a white paper focusing on mobility, communication and cognition (which fits our college focus)
In our opinion, it makes sense to partner with CLEAR to promote age-related research on campus:

- pool resources
- avoid confusion of multiple similar efforts
- CLEAR focuses on cognition
- Healthy Aging at Illinois has a broader focus
Mayo-Illinois Alliance
(for technology-based healthcare)

- Started in 2009; initial focus on computation and genomics
- Focus on individualize medicine – using genomic and other characteristics to personalize treatments
- Educational components: SURF's and grad fellowships
- Occasional funding opportunities – none at present
- Focus so far has been in cancer, microbiome, GI disease, data visualization, epigenomics/genomics, pharmacogenomics, and point of care diagnostics
- Opportunity to develop new relationships with geriatrics (#1 adult Geriatrics unit in the country, Kogod Center on Aging) and perhaps other relevant clinical units like neurology, biostatistics etc.
OLLI at ILLINOIS is

• A dynamic lifelong learning institute that offers non-credit courses, participatory study groups, lectures, educational travel, and other engagement opportunities

• Membership-based

• Open to participants over the age of 50

• A university unit located within the Office of the Provost
OLLI launched in 2007 with the support of the University of Illinois and the Bernard Osher Foundation.

OLLI is also supported by membership and enrollment fees and gifts from individual donors.
M2 Building – Downtown Champaign
OLLII Member Snapshot

1,300+ members
Youngest: 50
Oldest: 104
Typical: 67-77 – 60% women, 40% men
Evenly split between campus and community affiliations
OLLI has experienced dramatic growth:

Year 1 (2007-2008)
- 297 members
- 11 courses per semester
 - Typical enrollment: 20-30
- 45 program offerings

Year 9 (2015-2016)
- 1,303 members (and counting)
- 42 courses per semester
 - Typical enrollment: 65-100
- 255 program offerings
OLLII is a laboratory for the potentials of remaining intellectually and physically active across the lifespan.
Citizen Scientist Program
Beckman – IGB - OLLI
Building Bridges

- Courses – 8 weeks, 4 weeks, team-taught
- Lecture
- Citizen Scientist Program
- OLLI members as research subjects
- OLLI as database for study of healthy aging
- Other partnerships and collaborations?
THE BLITZ!
Jeffrey (Jeff) A. Woods, PhD

Affiliations
- Department of Kinesiology and Community Health
- Director, Center on Health, Aging and Disability
- Associate Dean for Research, College of Applied Health Sciences
- Division of Nutritional Sciences
- Center for Nutrition, Learning and Memory
- Department of Pathology, College of Medicine

Substantive Interests in Aging Research
- If and how exercise and diet affect the aging immune system
- Effects and mechanisms behind anti-inflammatory effects of exercise
- Effects of exercise on the gut microbiome and gut-brain axis

Other Research Interests
- Diet and exercise synergy on age-related cognitive loss
- Molecular transducers of the effects of physical activity/exercise

Tools and Methods
- In vitro, ex vivo and in vivo immune function assays
- Flow cytometry
- Gene expression
- Protein expression
- 16S rRNA analysis of microbiome
- Clinical interventions in older adults
- Pre-clinical animal experiments (including in aged mice)
Jeffrey (Jeff) A. Woods, PhD

- **Campus Collaborators**
 - Ed McAuley (KCH)
 - Art Kramer (Beckman)
 - Bryan White (IGB)
 - Hannah Holscher (FSHN)
 - Rod Johnson (AnSci/DNS)
 - Justin Rhodes (Beckman/Psych)
 - Kelly Swanson (AnSci)
 - George Fahey (AnSci)
 - Marni Boppart (KCH/Beckman)
 - Nick Burd (KCH)
 - Mike DeLisio (KCH)
 - Rex Gaskins (IGB)
 - Greg Freund (AnSci/CoM)
 - Drew Steelman (AnSci)

- **External Partners**
 - Abbott Nutrition
 - Mayo Clinic (Vandana Nehra, John Fryer)
 - UIC (Brown, Haus, Phillips, Arena)
New Collaborations You Would Like to Develop to Support Research Interests in Aging

- AARP
- Mayo Clinic Kogod Center on Aging (Nathan LaBrasseur)
- Clarke-Lindsey Village (Deb Reardanz)
- Communities of Champaign and Urbana (my Center initiating an ‘age-friendly’ community outreach effort; Chittenden Symposium April 26, 2016 “Health Technology and Aging”/“Age-Friendly Champaign-Urbana”)
- Anything health, technology and aging
- Carle Clinic Digestive Health Group (emerging)
Burning Questions

1. Does exercise affect the gut microbiota and its metabolites?
2. Are exercise-induced effects on the brain and behavior mediated through the gut-brain axis?
3. Does exercise affect barrier function (gut, brain)?
4. What are the molecular transducers of the beneficial effects of exercise?
5. Can dietary supplements synergize with exercise in improving cognition in the aged?
6. How does regular exercise act as an anti-inflammatory?
Inappropriate Inflammation: A common thread to pathology

Excessive or Chronic
Local and/or Systemic
Inflammation

Obesity
Infection
Aging
Cancer and Treatment
Gut Damage
Brain Injury

Metabolic Dysregulation
Morbidity and Mortality
Impaired Wound Healing
Tumor Growth
Altered Behavior (fatigue)
Learning and Memory
Poor Immune Responses
Poor Nutritional Status
Inflammatory Bowel Disease

Can Regular Exercise Alter
Inappropriate Inflammation
and Improve Its
Consequences?
Titles of Some of Our Published Work

Cardiovascular Exercise Training Extends Influenza Vaccine Seroprotection in Sedentary Older Adults: The Immune Function Intervention Trial
- Exercise delays allogeneic tumor growth and reduces intratumoral inflammation and vascularization
- Exercise training increases the naïve to memory T cell ratio in old mice

Exercise speeds cutaneous wound healing in high-fat diet-induced obese mice
- Reduction in trunk fat predicts cardiovascular exercise training-related reductions in C-reactive protein
- Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice

Moderate Exercise Early After Influenza Virus Infection Reduces the Th1 Inflammatory Response in Lungs of Mice
- Effects of voluntary wheel running on LPS-induced sickness behavior in aged mice

Exercise training increases size of hippocampus and improves memory
- Sex differences in the relationship between obesity, C-reactive protein, physical activity, depression, sleep quality and fatigue in older adults
- Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis
- Exercise accelerates cutaneous wound healing and decreases wound inflammation in aged mice

Voluntary Wheel Running Does Not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice
- Exercise, Inflammation, and Innate Immunity
Recent Published Papers on Exercise and the Gut

Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice

Jacob M. Allen, Margret E. Berg Miller, Brandt D. Pence, Keith Whitlock, Vandana Nehra, H. Rex Gaskins, Bryan A. White, John D. Fryer, and Jeffrey A. Woods

1Department of Kinesiology and Community Health, Mayo Clinic, Rochester, Minnesota; 2Integrative Immunology and Behavior Program, Mayo Clinic, Rochester, Minnesota; 3Department of Gastroenterology, Mayo Clinic, Rochester, Minnesota; 4Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; 5Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; 6Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; 7Department of Neuroscience, Mayo Clinic, Jacksonville, Florida

Submitted 5 December 2014; accepted in final form 8 February 2015

Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition

Silvia S. Kang, Patricio R. Jaradko, Aishe Kurti, Margret E. Berg Miller, Marc D. Cook, Keith Whitlock, Nigel Goldenfeld, Jeffrey A. Woods, Bryan A. White, Nicholas Chia, and John D. Fryer

Immunology and Cell Biology (2015), 1–6
© 2015 Australasian Society for Immunology Inc. All rights reserved 0818-9641/15
www.nature.com/icb

Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training

Marc D. Cook, Jacob M Allen, Brandt D Pence, Matthew A Wallig, H Rex Gaskins, Bryan A White, and Jeffrey A Woods
Some Current Projects

- “Understanding predictors of success in a comprehensive lifestyle treatment program for obesity: The fecal microbiome” (in conjunction with Mayo Clinic)

- “Running your microbiome to improve GI health: Can exercise-induced gut microbial changes attenuate the effects of ulcerative colitis” (experiment in gnotobiotic mice)

- “Can exercise and dietary fiber synergize to improve learning and memory in aging” (preclinical study)

- NIH RFA PAR-13-293 “Gut microbiota-derived factors in the integrated physiology and pathophysiology of diseases within NIDDK’s mission”
From An Exercise Physiology Standpoint: Where are the 'Next Frontiers'?

- stem cells and growth factors
- autophagy (tissue turnover)
- microbiota-host interactions
- epigenetics
- mechanisms in the brain
- individualized 'exercise is medicine'
Kevin Wise
Advertising
Interactive Media Use…

Increasingly physical

Increasingly mobile

Increasingly Embodied
Embodied Media Psychology

1. What physical cue is experienced during media use?

1. What related mental concept might be activated by this physical cue?

1. How might the activation of this mental concept affect the psychological outcomes of media use?
Question: What role do interactive/embodied media experiences play in CLEAR-related phenomena?

Kevin Wise
krwise@illinois.edu
Liz Stine-Morrow

Educational Psychology
The Adult Learning Lab (TALL)
Adult development of learning and language processing

- Language Processing
 - Sentences → Discourse
 - Age-related change in mechanisms
 - Self-regulation of attention
 - Effects of literacy experience

- Pathways to Cognitive Resilience
 - Strategy Instruction
 - Activity Engagement
 - Cognitive Training
N=458
(59-93 yrs old)

10th and 90th percentiles

Data from Stine-Morrow et al. (2014, Psych and Aging)
Sentence comprehension depends on using the syntactic cues to bind information together.

- e.g., The alderman the mayor opposed did not support the veto of the bill that banned smoking in restaurants.

(Stine-Morrow et al., *PandA*, 2001; *QJEP*, 2010)
Home-Based Working Memory Training

- Age-related declines in working memory impact
 - Language comprehension
 - Discourse memory
 - Reasoning performance
- Training on 3 span tasks x 10/day x 15 days

(Payne & Stine-Morrow, in preparation)
Lifestyle Intervention

Figure:
- **Enrollment:** Senior Odyssey
- **Eligibility:** Assessed for eligibility (n = 1,243)
 - Excluded (n = 781)
 1. Not meeting inclusion criteria (n = 288)
 2. Refused to participate (n = 430)
 3. Other reason (n = 65)
- **Randomization:**
 - Troy (n = 158)
 - Retained (n = 150)
 - Program Drop (PD) (n = 8)
 - Ithaca (n = 130)
 - Retained (n = 116)
 - PD (n = 14)
 - Control (n = 143)
- **Post-Testing:**
 - Tested (n = 158)
 - Retained (n = 149)
 - PD (n = 9)
 - Did Not Test (n = 31)
 - Retained (n = 6)
 - PD (n = 25)
 - Tested (n = 114)
 - Retained (n = 113)
 - PD (n = 1)
 - Tested (n = 124)
 - Did not test (n = 19)

Graph:
- Standardized Estimates of Change
 - Speed
 - VisSpat
 - Reasg
 - DivTh
 - Memory

Key:
- Waitlist
- Reasoning Training
- Engagement

Reference:
Help Wanted

• Effects of sustained literacy on late-life cognitive development?
 – Cognitive? Neural? Dispositional?
• Emotion-cognition interactions in literacy engagement?
 – Electromyography?
 – Imaging?
• What is the promise of VR for narrative embedding? Cognitive benefits?
Jacob Sosnoff
Kinesiology & Community Health
Tele-rehabilitation system for fall risk assessment

Kathleen L Roeing¹, Yaejin Moon¹, Rama Ratnam², Jacob J. Sosnoff¹

¹ Kinesiology and Community Health
² Coordinated Science Lab
Falls: Aging and Disability

• 1 in 3 people aged 65+ will fall once a year and 10-20% of these result in injury, hospitalization, and/or death (Rubenstein, 2006)
• Falls are also major concern in the multiple sclerosis (MS) population with an incidence rate of over 50% (Finlayson, Peterson, & Cho, 2006)
• Developing home-based fall risk identification is necessary to reduce health care costs and improve quality of life.

Kinect system
Challenging balance conditions
Bertec Force Plate
Salus
Body sway as a fall risk factor
Force Plate

Body sway as a fall risk factor
Results and Capabilities

- Participants: 15 young adults (18-30), 15 older adults (65+), 6 individuals with MS
- Moderate to strong correlations for postural sway between Kinetic camera and force plate in all conditions
- Future applications
Brent Roberts

Psychology
Things we do

- Personality assessment
- Personality development
- Longitudinal methods
Current predilections

- Measuring and assessing non-cognitive factors that predict human capital for OECD and World Bank
- Showing that vocational interests are more important than traits and abilities in shaping the life course
- Interventions to change personality traits
Future possibilities in the area of aging

• Genomics of personality and cognitive decline with Bennett and Briley

• Longitudinal studies linking stress to personality change

• Personality and end of life planning
Sean Mullen

Kinesiology & Community Health
Exercise, Technology, & Cognition Lab
exercisetechnologylab.com

Sean Mullen, PhD
Research Focus

1. What are the best ways to increase exercise self-regulation? (outside the lab)
2. What technologies are most effective at increasing exercise?
3. What types of adjuvant therapies combined with exercise will increase brain function and heart health?
Research Compass

NHLBI-funded RCT to test the efficacy of a multi-modal cognitive training to enhance 4-month exercise self-regulation among healthy middle-aged adults.

CHAD-funded pilot RCT to test the effects of a 10-month iPad-enhanced exergaming intervention on spatial memory & wayfinding self-efficacy among adults with probable MCI.

UIUC RB-funded pilot trial to test the additive effects of exercise & steam-room on BP among middle-aged adults with pre-hypertension.

Sean Mullen, PhD
exercisetechlab.com
ETC Lab Toys
Dan Morrow

Educational Psychology
• Self-care is a critical challenge for older adults, who are more likely to have chronic illness but less likely to have the cognitive resources needed for self-care

• Theory-guided interventions to improve self-care among older adults with chronic illness.
 – Leverage age-related cognitive strengths (e.g., knowledge) and minimize demands on age-vulnerable cognitive resources (e.g., processing capacity) to support comprehension and decision making
Process-knowledge model explains health literacy in terms of the interplay between declining processing capacity and sustained general and health knowledge.

In support of this model, association of health literacy and recall of self-care information is mediated by health knowledge and processing capacity.

Guided by the P-K model, we redesigned information about self-care from credible websites and improved memory for this information among older adults with varying levels of knowledge about hypertension.
Collaborative Patient Portals
With Mark Hasegawa-Johnson & Tom Huang (Beckman), William Schuh (Carle), Rocio Garcia-Retamero (Univ Granada)

• Self-care information is often provided through patient portals to Electronic Health Records. Older adults are less likely to use portals and may not understand portal-based numeric information (e.g., test results).

• Our goal: improve comprehension of test results among older adults varying in health literacy by providing context in form of graphics and video recorded physician.

• Current study finds that enhanced formats improve gist comprehension compared to standard format.

• Now developing Computer Agent (CA) based on the video to evaluate whether the portal-based CA improves patient comprehension and collaboration with providers.
Fatima Husain
Speech and Hearing Research
Aging Research in the Auditory Cognitive Neuroscience Lab

Fatima Husain, PhD
Associate Professor, Speech and Hearing Science, Beckman Institute for Advanced Science and Technology & the Neuroscience Program
Affiliate, Center on Health Aging and Disability
University of Illinois at Urbana-Champaign
Broad Outline of my Research

TOOLS
- Behavior
- Brain Imaging
- Computational Modeling

QUESTIONS
- Audition
- Speech
- Aging
- Disorders
Both hearing limitations (hearing acuity, tinnitus, listening environment) and aging limitations may have an effect on perceptual, working memory and higher-order processing operations.
Example result: Gray matter & white matter declines due to hearing loss

- When comparing older adults with hearing loss to age-matched control group with normal hearing
 - Declines in gray matter in frontal cortex
 - Changes in orientation values of white matter tracts (indicative of poor microstructure integrity)

Husain, et al., *Brain Research*, 2011
Naira Hovakimaya
Mechanical Science & Engineering
and
Alex Kirlik
Computer Science
ASPIRE: Automation Supporting Prolonged Independent Residence for the Elderly

Naira Hovakimyan
in collaboration with

A. Kirlik, A. Laviers, D. Stipanovic, F. Wang, X. Wang, C. Goudeseune, and R. Carbonari
Vision & Objective

- The care giving demand for elderly and people with disabilities will grow substantially.
- Available resources (personnel, money, ...) will not grow at the same pace.
- Care will need to be delivered at home as much as possible.

Provide a framework for **robotic assistive care** to provide independence to the elderly population.

- **Human-centered approach** to design of robust safety-critical systems.
- Merges research from control engineering, psychological sciences & computer science to create meaningful solutions to this problem.

Help is required to perform:
- Memory functions, health monitoring, **daily activities**:
 - **ADL** – Activities of Daily Living
 - **IADL** – Instrumental Activities of Daily Living
 - **EADL** – Enhanced Activities of Daily Living

UN Report, Department of Economic and Social Affairs, Population Division, 2001
Problem Statement

Designing robots for autonomous assistive tasks

Develop a framework for the operation of autonomous vehicles to perform care giving tasks while also acknowledging the perceived safety and comfort of the operator.

- Analyze how behavior and appearance models of ground and flying robots affect senior citizens comfort and perceived safety.
- Develop friendly user interface taking into account cognitive demand.
- Design guidance and control algorithms for the care giving robots to minimize human discomfort and increase acceptability.

Source: Wired Magazine
Proposed Architecture

User specific needs

INTERFACE

HIGH-LEVEL CTRL (HLC)

ROBOTS

pos, vel, acc

perceived safety, comfort

map, obstacles, …

User specific needs

INTERFACE

HIGH-LEVEL CTRL (HLC)

ROBOTS

Virtual reality

Interface design

Acceptability

Control

N E T W O R K

cmd

alarm, ...

reminders, alarms, ...

tasks, messages, ...

task, perception, ...

activities, time, ...

activities, time, ...

video, position, ...

User specific needs

INTERFACE

HIGH-LEVEL CTRL (HLC)

ROBOTS

Virtual reality

Interface design

Acceptability

Control
Research Progress

• Development of an aerial robot simulator in virtual reality for purposes of psychological experiments to study human comfort in the presence of a robot.
• The robot dynamics and control system are simulated in VR, real-time from Simulink.
• The robot can perform collision-free trajectory tracking to predefined destinations.

What’s next?
• Performing psychological experiments to study the perceived safety of humans in the vicinity of robots.
• Constructing mathematical models for different robotic behaviors in the presence of humans (e.g.: collision avoidance, cooperative control)
Psychological Experiments

- **Perceived safety** will be operationalized in terms of judgments of relative proximity.
- **IMU / Head tracking** data (Rift) will be recorded to assess variation in head movement: head tilt cheaply measures discomfort.
- Individual differences in **VR presence** and **simulator sickness** will be assessed with self-report questionnaires.

Aspects of robot behavior will be tested in controlled experiments using a **mixed factorial design**:
- Approach angle
- Speed, Acceleration
- Size

Acceleration and audio profiles of the drone are considered to be constant. Future research will explore the case of time-varying acceleration and jerk profiles, as well as audio/noise variations.
Conclusion

• The main objective of ASPIRE is to lay the foundation for the coordinated use of small aerial and ground robots in domestic environments
 • The robot design is based on a rigorous mathematical framework with provable guarantees for robustness and safety, and it takes into account the human’s perception and comfort level
• Our goal is to create a prototype assistive co-robotic system to aid elder populations and people with disabilities aging in place
• Providing senior citizens with useful tools to extend periods of independent living will mitigate some of the large and rapidly growing costs associated with the graying of the U.S. population

Naira Hovakimyan

W. Grafton and Lillian B. Wilkins Professor, University Scholar, Schaller Faculty Scholar
Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign
nhovakim@illinois.edu
http://naira.mechse.illinois.edu
Manuel Hernandez

Kinesiology & Community Health
Research Questions

1. Does fitness impact the ability of older adults to recruit additional attentional resources to maintain balance when navigating novel and complex environments?
2. How does the brain encode balance? and how is it altered as we age? Or due to a neurological condition?
Cognition and Brain (CAB) Lab:
Study cognitive processes using measures of electrical brain activity (ERPs: Event-Related Potentials) and eye-tracking
Language Comprehension and Aging

• Older adults tend to report little subjective loss in language comprehension abilities.
• Yet, ERPs and eye-tracking measures reveal striking changes in language comprehension with age.
• This makes language a rich domain for understanding how brain networks are flexibly and dynamically established to accomplish processing goals.

"With sixty staring me in the face, I have developed inflammation of the sentence structure and definite hardening of the paragraphs." – James Thurber

(New York Post, June 30, 1955)
Older adults process language more passively. They are less likely (as a group) to...

- predict
- immediately resolve ambiguity (*duck*)
- form mental images from words

This arises from changes in the dynamics of the whole brain

- different use of the two hemispheres
- different tendency to activate control structures
- different sensitivity to errors
Individual differences

• Some individual differences (e.g., based on verbal fluency) are highly robust:
 – observed consistently, across different paradigms and measures

• These differences further reveal the malleability of the system, and provide insights into avenues for intervention.
Cognitive Neuroimaging Lab
(CNL, Gratton & Fabiani, co-directors)

• Cognitive neuroscience research over the life span, from preterm infants to older adults
 – Working memory and attention
 – Physiological and anatomical contributions
• Enabled by methodological advances
 – Development of fast optical imaging
 – Combination/fusion of multiple imaging methods
 – Envisioning methods for the future of imaging
• Recent collaboration with John Rogers’ lab
Intrinsic Optical Signals: Pulse (absorption)

Arterial pulsation leads to increased light absorption
MR-based arteriogram

This is most evident over large arteries, which may be visualized

The progression of the pulse in these arteries can then be studied

In collaboration with Dr. Sutton (U. of Illinois).
Funded by NIA (Fabiani/Gratton).
Fabiani et al. (2014, Psychophysiology)
Pulse and arterial elasticity

Arterial elasticity (stiffness) varies with age. It is a major factor in dementia and strokes. Cerebral arterial elasticity can be measured by studying parameters of the optical pulse (Fabiani et al., 2014)

Optical pulse parameters correlate with age, fitness (CRF), and brain volumes

Compliance (arterial elasticity) maps for individual subjects

Compliance and white matter

D wave amplitude (% peak)
Neurovascular coupling in young and older adults

Z score

EROS

Δ[HbO]

Δ[HbR]

Fabiani et al. (2014, *NeuroImage*)
Florin and Sanda Dolcos

Psychology
Age-Related Differences in Emotion-Cognition Interactions

Evidence for Preserved Emotional Evaluation & Memory, and Enhanced Emotion Control in Aging

St Jacques et al. (2010), *Neurobiology of Aging*

St Jacques et al. (2009), *Psychological Science*

Derived Ongoing Research & Future Directions:

- Factors influencing the positive affective bias in healthy aging.
- Age-related differences in social cognition and decision-making.
- Generational differences in non-verbal communication.
- Stereotype threat in aging: mechanisms and interventions.
- Incorporation of eye-tracking and ERP recordings.

Cognitive and Emotional Aging

Factors Influencing Successful Cognitive and Emotional Aging

Dolcos S. et al. (2012), *Neuropsychology*

Evidence for Spontaneous Emotion Regulation in Older Adults: Increased activity in the ventral anterior cingulate cortex (vACC) correlated negatively with the behavioral ratings for low-arousing negative pictures, in older adults. NegLo, Negative Low-Arousal; NeuAll, Neutral All.

Dolcos S. et al. (2014), *Frontiers in Psychology*
I. The Impact of Emotion on Cognition

1. The Memory-Enhancing Effect of Emotion

- **Amygdala-MTL Interactions**
 - Emotional Pictures
 - ERPs of Emotional Memory Encoding
 - fMRI of Emotional Memory Retrieval

2. The Memory-Impairing Effect of Emotion

- Neural Correlates of the Response to Emotional Distractors
 - Scrambled Distracter
 - Neutral Distracter

III. The Role of Individual Differences

1. Age-Related Differences

- Neural Correlates of Emotional Evaluation and Memory

2. Personality- and Sex-Related Differences

- Neural Correlates of Promotion Regulatory Focus

3. Illness-Related and Genetic Differences

- Neural Genetic Substrate of Trauma-Related Response in PTSD
 - Dolcos et al. (2005). Proceedings of the National Academy of Sciences

Age-Related Differences in Emotion-Cognition Interactions

Evidence for Preserved Emotional Evaluation & Memory, and Enhanced Emotion Control in Aging

St Jacques et al. (2010), Neurobiology of Aging

Cognitive and Emotional Aging

Factors Influencing Successful Cognitive and Emotional Aging

Dolcos S. et al. (2012), Neuropsychology

Derived Ongoing Research & Future Directions:

- Factors influencing the positive affective bias in healthy aging.
- Age-related differences in social cognition and decision-making.
- Generational differences in non-verbal communication.
- Stereotype threat in aging: mechanisms and interventions.
- Incorporation of eye-tracking and ERP recordings.

Evidence for Spontaneous Emotion Regulation in Older Adults: Increased activity in the ventral anterior cingulate cortex (vACC) correlated negatively with the behavioral ratings for low-arousing negative pictures, in older adults. NegLo, Negative Low-Arousal; NeuAll, Neutral All.

Dolcos S. et al. (2014), Frontiers in Psychology
DISCUSSION?
NEXT:
Posters
Beckman Atrium
Happy Hour
5:30-