Joseph Lyding

Description

Address

  • 3065 Beckman Institute
  • 405 North Mathews Avenue
  • Urbana, Illinois 61801

Biography

Joe Lyding received his Ph.D. from Northwestern University in 1983. He is a professor in the U of I Department of Electrical and Computer Engineering and a full-time faculty member in the Nanoelectronics and Nanomaterials group. His fields of professional interest are scanning tunneling microscopy, nanofabrication, nanoelectronics, and IC chip reliability.

Honors

DARPA Excellent Performance Citation (1998); Philips Visiting Scholar, Haverford College (1998); University Scholar, UIUC (1997); Fellow of American Physical Society (1997); Associate, UIUC Center for Advanced Study (1996-97); IBM Partnership Award (1996-97); Fellow, UIUC Center for Advanced Study (1987-88); Arnold O. Beckman Award, UIUC (1988, 1985, 1984); Tau Beta Pi Outstanding Teaching Award (1984); ACS Arthur K. Doolittle Award (1983); IBM Postdoctoral Fellowship (1983); AAAS Fellow (2014); Award for Outstanding Research from the Prairie Chapter of the American Vacuum Society (2015).  

Research

Joe Lyding constructed Illinois' first scanning tunneling microscope which led to his invention of an ultrastable STM that is patented and commercially marketed. Lyding's group then established the STM laboratory at the Beckman Institute by constructing a series of interconnected ultrahigh vacuum (UHV) chambers housing STMs for experiments at elevated temperatures as well as down to liquid helium temperature. From 1992-1997 this system served as the basis for a University Research Initiative funded by the Office of Naval Research to develop STM-based nanolithographic methods. In 1993-94, Lyding developed the techniques and performed the first experiments demonstrating the ability to pattern hydrogen passivated silicon surfaces with atomic level precision. This technique has now been copied by many groups worldwide.

In 1995, Lyding, working in collaboration with Phaedon Avouris of IBM, discovered a giant isotope effect when comparing the STM desorption of hydrogen and deuterium from silicon. This led to the idea by Lyding and his colleague Karl Hess that deuterium might be useful for retarding the hot-electron damage that occurs at the oxide-silicon interface of integrated circuit transistors. Defects at this interface are removed by a deliberate hydrogen treatment during chip fabrication. However, during chip operation they reappear over time as hydrogen is evolved from the interface under hot-electron assault. Lyding and Hess teamed up with Isik Kizilyalli of Lucent and demonstrated that replacing the hydrogen with deuterium increased chip lifetime by factors of 10 to 50. This dramatic improvement has been widely confirmed by many of the major chip makers who are now incorporating deuterium into their chip fabrication facilities.

In addition to working with many companies on deuterium processing, Lyding has extended his nanofabrication research in the direction of molecular electronics. He has refined his STM method to the point where arrays of single silicon dangling bonds can be created as a template for tethering individual molecules. Working with Jeff Moore, Lyding has demonstrated the ability to tether and image arrays of individual molecules that may serve as the basis for future memory and switching elements. Lyding is also using STM spectroscopy to image intramolecular details and to provide a basis for evaluating molecular electronic functionality. Lyding now directs Illinois' part of an ONR-funded multidisciplinary university research initiative (MURI) to develop a nanoscale integrated circuit.

Publications

  • 2015
    • Wood, J. D.; Doidge, G. P.; Carrion, E. A.; Koepke, J. C.; Kaitz, J. A.; Datye, I.; Behnam, A.; Hewaparakrama, J.; Aruin, B.; Chen, Y. F.; Dong, H.; Haasch, R. T.; Lyding, J. W.; Pop, E., Annealing Free, Clean Graphene Transfer Using Alternative Polymer Scaffolds. Nanotechnology 2015, 26, (5), DOI:Artn 055302 DOI:10.1088/0957-4484/26/5/055302.

    • Martin, P. P.; Lyding, J.; Rockett, A., Scanning Tunneling Spectroscopy of Epitaxial Silver Indium Diselenide. Surface Science 2015, 636, 8-12, DOI: 10.1016/j.susc.2015.01.012.

    • Do, J. W.; Chang, N. N.; Estrada, D.; Lian, F. F.; Cha, H. Y.; Duan, X. Y. J.; Haasch, R. T.; Pop, E.; Girolami, G. S.; Lyding, J. W., Solution-Mediated Selective Nanosoldering of Carbon Nanotube Junctions for Improved Device Performance. ACS Nano 2015, 9, (5), 4806-4813, DOI: 10.1021/Nn505552d.

  • 2014
    • Mohseni, P. K.; Behnam, A.; Wood, J. D.; Zhao, X.; Yu, K. J.; Wang, N. C.; Rockett, A.; Rogers, J. A.; Lyding, J. W.; Pop, E.; Li, X., Monolithic III‐V Nanowire Solar Cells on Graphene via Direct Van Der Waals Epitaxy. Advanced Materials 2014, 26, (22), 3755-3760.

    • Nienhaus, L.; Scott, G. E.; Haasch, R. T.; Wieghold, S.; Lyding, J. W.; Gruebele, M., Transparent Metal Films for Detection of Single-Molecule Optical Absorption by Scanning Tunneling Microscopy. Journal of Physical Chemistry C 2014, 118, (24), 13196-13202.

    • Olewicz, T.; Antczak, G.; Jurczyszyn, L.; Lyding, J. W.; Ehrlich, G., Coexistence of Two Diffusion Mechanisms: W on W (100). Physical Review B 2014, 89, (23), 235408.

    • Nguyen, D.; Mallek, J.; Cloud, A. N.; Abelson, J. R.; Girolami, G. S.; Lyding, J.; Gruebele, M., The Energy Landscape of Glassy Dynamics on the Amorphous Hafnium Diboride Surface. Journal of Chemical Physics 2014, 141, (20), DOI:Artn 204501 Doi 10.1063/1.4901132.

    • Grosse, K. L.; Dorgan, V. E.; Estrada, D.; Wood, J. D.; Vlassiouk, I.; Eres, G.; Lyding, J. W.; King, W. P.; Pop, E., Direct Observation of Resistive Heating at Graphene Wrinkles and Grain Boundaries. Applied Physics Letters 2014, 105, (14), DOI:Artn 143109 DOI:10.1063/1.4896676.

    • Carrion, E. A.; Wood, J. D.; Behman, A.; Tung, M.; Lyding, J. W.; Pop, E., Variability of Graphene Mobility and Contacts: Surface Effects, Doping and Strain. 2014 72nd Annual Device Research Conference (DRC) 2014 199-200.

  • 2013
    • Do, J. W.; Estrada, D.; Xie, X.; Chang, N. N.; Mallek, J.; Girolami, G. S.; Rogers, J. A.; Pop, E.; Lyding, J. W., Nanosoldering Carbon Nanotube Junctions by Local Chemical Vapor Deposition for Improved Device Performance. Nano Letters 2013, 13, (12), 5844-5850, DOI: 10.1021/nl4026083.

    • Koepke, J. C.; Wood, J. D.; Estrada, D.; Ong, Z. Y.; He, K. T.; Pop, E.; Lyding, J. W., Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering at Graphene Grain Boundaries: A Scanning Tunneling Microscopy Study. ACS Nano 2013, 7, (1), 75-86.

    • Mohseni, P. K.; Behnam, A.; Wood, J. D.; English, C. D.; Lyding, J. W.; Pop, E.; Li, X. L., InxGa1-aAs Nanowire Growth on Graphene: Van Der Waals Epitaxy Induced Phase Segregation. Nano Letters 2013, 13, (3), 1153-1161.

    • Walling, B. E.; Kuang, Z. Z.; Hao, Y. H.; Estrada, D.; Wood, J. D.; Lian, F. F.; Miller, L. A.; Shah, A. B.; Jeffries, J. L.; Haasch, R. T.; Lyding, J. W.; Pop, E.; Lau, G. W., Helical Carbon Nanotubes Enhance the Early Immune Response and Inhibit Macrophage-Mediated Phagocytosis of Pseudomonas Aeruginosa. Plos One 2013, 8, (11), DOI: 10.1371/journal.pone.0080283.

    • Ye, W.; Min, K.; Martin, P. P.; Rockett, A. A.; Aluru, N. R.; Lyding, J. W., Scanning Tunneling Spectroscopy and Density Functional Calculation of Silicon Dangling Bonds on the Si(100)-2 X 1:H Surface. Surface Science 2013, 609, 147-151.

  • 2012
    • Ashtekar, S.; Lyding, J.; Gruebele, M., Temperature-Dependent Two-State Dynamics of Individual Cooperatively Rearranging Regions on a Glass Surface. Physical Review Letters 2012, 109, (16).

    • Ashtekar, S.; Nguyen, D.; Zhao, K.; Lyding, J.; Wang, W. H.; Gruebele, M., Communication: An Obligatory Glass Surface. Journal of Chemical Physics 2012, 137, (14).

    • Do, J.-W.; Estrada, D.; Xie, X.; Chang, N. N.; Girolami, G. S.; Rogers, J. A.; Pop, E.; Lyding, J. W., Nanosoldering Carbon Nanotube Junctions with Metal Via Local Chemical Vapor Deposition for Improved Device Performance. Proceedings of 12th IEEE Conference on Nanotechnology 2012 1.

    • Martin, P. P.; Rockett, A. A.; Lyding, J., Growth Mechanism and Surface Atomic Structure of AginSe2. Journal of Vacuum Science & Technology A 2012, 30, (4).

    • He, K. T.; Wood, J. D.; Doidge, G. P.; Pop, E.; Lyding, J. W., Scanning Tunneling Microscopy Study and Nanomanipulation of Graphene-Coated Water on Mica. Nano Letters 2012, 12, 2665.

    • Schmucker, S. W.; Kumar, N.; Abelson, J. R.; Daly, S. R.; Girolami, G. S.; Bischof, M. R.; Jaeger, D. L.; Reidy, R. F.; Gorman, B. P.; Alexander, J.; Ballard, J.; Randall, J.; Lyding, J. W., Field-Directed Sputter Sharpening for Tailored Probe Materials and Atomic-Scale Lithography. Nature Communications 2012, 3, 935.

    • Timmermans, M. Y.; Estrada, D.; Nasibulin, A. G.; Wood, J. D.; Behnam, A.; Sun, D. M.; Ohno, Y.; Lyding, J. W.; Hassanien, A.; Pop, E.; Kauppinen, E. I., Effect of Carbon Nanotube Network Morphology on Thin Film Transistor Performance. Nano Research 2012, 5, (5), 307-319.

  • 2011
    • Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W., Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Letters 2011, 11, (11), 4547-4554.

    • Lyding, J. W., SURFACE CHEMISTRY Molecular cart-wheeling. Nature Chemistry 2011, 3, (5), 341-342. 

    • Ashtekar, S.; Scott, G.; Lyding, J.; Gruebele, M., Direct observation of two-state surface dynamics on amorphous silicon. Physical Review Letters 2011, 106.

  • 2010
    • Scott, G.; Ashtekar, S.; Lyding, J.; Gruebele, M., Direct Imaging of Room Temperature Optical Absorption with Subnanometer Spatial Resolution. Nano Letters 2010, 10, (12), 4897-4900. 

    • Unarunotai, S.; Koepke, J. C.; Tsai, C. L.; Du, F.; Chialvo, C. E.; Murata, Y.; Haasch, R.; Petrov, I.; Mason, N.; Shim, M.; Lyding, J.; Rogers, J. A., Layer-by-Layer Transfer of Multiple, Large Area Sheets of Graphene Grown in Multilayer Stacks on a Single SiC Wafer. ACS Nano 2010, 4, (10), 5591-5598. 

    • Ye, W.; Martin, P. A. P.; Kumar, N.; Daly, S. R.; Rockett, A. A.; Abelson, J. R.; Girolami, G. S.; Lyding, J. W., Direct Writing of Sub-5 nm Hafnium Diboride Metallic Nanostructures. ACS Nano 2010, 4, (11), 6818-6824. 

    • Mayer, M. A.; Ruppalt, L. B.; Hebert, D.; Lyding, J.; Rockett, A. A., Scanning tunneling microscopic analysis of Cu(In,Ga)Se-2 epitaxial layers. Journal of Applied Physics 2010, 107, (3), doi:10.1063/1.3304919.

    • Mayer, M. A.; Ruppalt, L. B.; Hebert, D.; Lyding, J.; Rockett, A. A., Scanning tunneling microscopic analysis of Cu(In,Ga)Se-2 epitaxial layers. Journal of Applied Physics 2010, 107, (3), doi:10.1063/1.3304919.

    • Randall, J. N.; Ballard, J. B.; Lyding, J. W.; Schmucker, S.; Von Ehr, J. R.; Saini, R.; Xu, H.; Ding, Y., Atomic precision patterning on Si: An opportunity for a digitized process. Microelectronic Engineering 2010, 87, (5-8), 955-958.

    • Ashtekar, S.; Scott, G.; Lyding, J<.; Gruebele, M., Direct Visualization of Two-State Dynamics on Metallic Glass Surfaces Well Below T-g. Journal of Physical Chemistry Letters 2010, 1, (13), 1941-1945. 

    • He, K. T.; Koepke, J. C.; Barraza-Lopez, S.; Lyding, J. W., Separation-Dependent Electronic Transparency of Monolayer Graphene Membranes on III-V Semiconductor Substrates. Nano Letters 2010, 10, (9), 3446-3452. 

  • 2009
    • Ritter, K. A.; Lyding, J. W., The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Materials 2009, 8, (3), 235-242.

    • Barraza-Lopez, S.; Albrecht, P. M.; Lyding, J. W., Carbon nanotubes on partially depassivated n-doped Si(100)-(2x1):H substrates. Physical Review B 2009, 80, (4).

    • Lyding, J. W., Carbon Nanotubes: A simple approach to superlattices. Nature Nanotechnology 2009, 4, (9), 545-546.

    • Randall, J. N.; Lyding, J. W.; Schmucker, S.; Von Ehr, J. R.; Ballard, J.; Saini, R.; Xu, H.; Ding, Y., Atomic precision lithography on Si. Journal of Vacuum Science & Technology B 2009, 27, (6), 2764-2768.

  • 2008
    • Ritter, K. A.; Lyding, J. W., Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunneling microscopy. Nanotechnology 2008, 19, (1).

  • 2007
    • Albrecht, P. M.; Barraza-Lopez, S.; Lyding, J. W., Scanning tunnelling spectroscopy and ab initio calculations of single-walled carbon nanotubes interfaced with highly doped hydrogen-passivated Si(100) substrates. Nanotechnology 2007, 18, (9).

    • Albrecht, P. M.; Lyding, J. W., Local stabilization of single-walled carbon nanotubes on Si(100)-2x1 : H via nanoscale hydrogen desorption with an ultrahigh vacuum scanning tunnelling microscope. Nanotechnology 2007, 18, (12).

    • Albrecht, P. M.; Lyding, J. W., Lateral manipulation of single-walted carbon nanotubes on H-passivated Si(100) surfaces with an ultrahigh-vacuum scanning tunneling microscope. Small 2007, 3, (1), 146-152.

    • Carmichael, E. S.; Ballard, J. B.; Lyding, J. W.; Gruebele, M., Frequency-modulated, single-molecule absorption detected by scanning tunneling microscopy. Journal of Physical Chemistry C 2007, 111, (8), 3314-3321.

    • Ruppalt, L. B.; Lyding, J. W., Charge transfer between semiconducting carbon nanotubes and their doped GaAs(110) and InAs(110) substrates detected by scanning tunnelling spectroscopy. Nanotechnology 2007, 18, (21).

    • Ruppalt, L. B.; Lyding, J. W., Metal-induced gap states at a carbon-nanotube intramolecular heterojunction observed by scanning tunneling microscopy. Small 2007, 3, (2), 280-284.

    • Albrecht, P. M.; Barraza-Lopez, S.; Lyding, J. W., Preferential orientation of a chiral semiconducting carbon nanotube on the locally depassivated Si(100)-2x1 : H surface identified by scanning Tunneling microscopy. Small 2007, 3, (8), 1402-1406.

  • 1999
    • Hersam, M. C., Abeln, G. C., and Lyding, J. W. (1999), "An Approach for Efficiently Locating and Electrically Contacting Nanostructures Fabricated via UHV-STM Lithography on Si(100)," Microelectronic Engineering, 47, p. 235.

    • Kizilyalli, I. C., Hess, K., and Lyding, J. W. (1999), "Channel Hot Electron Degradation-delay in MOS Transistors Due to Deuterium Anneal," Chapter 13, The VLSI Handbook (CRC Press LLC).

    • Lee, J., Epstein, Y., Berti, A. C., Huber, J., Hess, K., and Lyding, J. W. (1999), "The Effect of Deuterium Passivation at Different Steps of CMOS Processing on Lifetime Improvements of CMOS Transistors," IEEE Transactions on Electron Devices, 46, p. 1812.

  • 1998
    • Lyding, J. W., Hess, K., Abeln, G. C., Thompson, D. S., Moore, J. S., Hersam, M. C., Foley, E. T., Lee, J., Chen, Z., Hwang, S. T., Choi, H., Avouris, P. H., and Kizilyalli, I. C. (1998), "UHV-STM Nanofabrication and Hydrogen/Deuterium Desorption from Silicon Surfaces: Implications for CMOS Technology," Applied Surface Science, 130-132, p. 221.

    • Foley, E. T., Kam, A. F., Lyding, J. W., and Avouris, P. H. (1998), "Cryogenic UHV-STM Study of Hydrogen and Deuterium Desorption from Si(100)," Physical Review Letters, 80/6, pp. 1336-1339.

Press

The Communications Office maintains the information included in Beckman Institute's online directory listings. In order to update your directory listing, please submit the following information to directory-updates@beckman.illinois.edu:

  • a short bio including information on your educational background and your field
  • any honors and awards you may have received
  • a description of your research (approximately 200-400 words)
  • a list of recent representative publications
  • a photo of yourself (you can submit one or we can take one for you)